
Using Format Concatenation in SAS Software to Decode Data in Longitudinal Studies

Perry Watts, IMS Health, Plymouth Meeting, PA

Abstract

Formatting data becomes a complex process when codes
change their meaning over time. While new codes can be easily
accommodated, deletions and modifications require multiple
time-dependent versions of a format for accurate decoding. All
these versions must be available to the programmer who works
with longitudinal data.

This paper uses the concatenation feature in the FORMAT pro-
cedure to eliminate redundancy from versioned formats. The
author shows how to create the formats and then how to use
them in a sequentially linked manner so that time is incorporated
as a dimension into the decoding event. Efficiency issues are also
considered in the presentation. For a description of format con-
catenation, the reader is referred to Jack Shoemaker’s paper
Advanced Techniques to Build and Manage User-
Defined SAS FORMAT Catalogs that appeared in the
NESUG 1998 Conference Proceedings.

Problem Definition

Coded values in the health care industry are constantly changing.
The development of new drugs generates new codes. A zip code
for a hospital may change from one year to the next. A given
illness may be subsumed under a different diagnostic classifica-
tion such that the original code ceases to exist. In short all types
of edits - add, modify, and delete are required for the accurate
decoding of longitudinal data.

The problems only get worse when the number of formats used
for decoding increases or when they are updated on a quarterly
instead of an annual basis. In addition, if formats interact with
each other, they must be updated in synchrony.

Formats can interact with each other in several ways. First, a
single code may yield multiple decoded values. For example, the
code 111222333 might represent the drug XYZZY and a
dosage of twice per day. Secondly, the output of one format
can be used as input to another. In this instance, one needs to
nest function calls to obtain a correctly formatted value. The
value for x below depends on both afmt and bfmt being accu-
rate for the time period in which the variable a is created.

x = put(put(a,afmt.),$bfmt.);

If format interaction exists in a programming environment, then all
formats should have access to their time-dependent antecedents.
Unfortunately, such open access requires a lot disk space. For-
mat concatenation addresses this problem by removing all re-
dundancy from versioned formats.

Description of the Formats

Diagnostic codes updated annually from 1990 through 1999 are
diagrammed prior to concatenation in Figure 1.

Figure 1. Ten DX formats for the years 1990 to 1999.

Only the current version of the format is used for decoding diag-
noses in a transaction file. There is no way to link format name to
the year of the update. Earlier versions of such a format are typi-
cally archived to save disk space.

Figure 2 shows a diagram of the same formats after concatena-
tion.

Figure 2. Concatenated formats communicate with each other by
using their antecedents as labels. Such formats on the right side of
an equation are known as embedded formats.

The dated records in the transaction file depicted in Figure 2 can
be matched to the appropriate format with the putc function that
links the data-year to the year sub-string in the format name. A
code fragment later in the paper shows exactly how the linkage
occurs.

Once data-year is linked to format name, the most recent up-
dates are searched first for a match. If no match occurs, then the
processing moves back in time by invoking the embedded for-

DX1F DX8F DX9F DX10F

All Formats All Formats All Formats All Formats

Transaction File

12345 04/22/1997
12345 09/01/1998

. . .

(Archived)

Transaction File

.12345 04/22/1997
12345 09/01/1998 .

1999 Updates

other=[$E1998F9.]
1998 Updates

other=[$E1997F9.]
1997 Updates

other=[$E1997F9.]

...

All Formats

other=' '

E1990F

E1997F

E1998F

E1999F

mat. Eventually, in the absence of an update, the E1990F for-
mat is applied to the diagnostic code in the transaction file.
E1990F is simply a copy of the DX1F format in Figure 1.

Overlapping range errors do not occur when embedded formats
are used, so the same code on the left side of a format equation
can appear in multiple linked formats (Shoemaker). Because of
this feature, updates can be restricted to a defined range in time.
For example, if code 12345 references Measles in 1998,
Chicken Pox in 1997 and doesn’t exist prior to 1997, a diagno-
sis of 12345 recorded in 1999 will be decoded correctly as
Measles, one in 1997 will return Chicken Pox, and an entry in
1992 will be coded as missing. From Figure 1 for the original
formats, code 12345 recorded in 1997 would be erroneously
decoded as Measles.

Implementing Format Concatenation

Figure 3. Flowchart for creating concatenated formats.

Creating a series of concatenated formats involves the completion
of two major tasks. The tasks depicted as two separate paths are
flowcharted in Figure 3. They are described in separate sections
below.

•• Converting the Original Formats
From the flowchart one can see that all the original formats must
be available to the developer for processing. These formats are
converted to SAS data sets with the cntlout option on the
FORMAT procedure. For example, DX1F populates variables
start and label in the newly created SAS data set DS1 in the
code example below:

proc format library=library.formats
cntlout=DS1 (keep=start label);

select DX1F;
run;

Actually ten cntlout data sets, DS1, DS2,…,DS10, are needed
for generating the new formats. A macro %do-loop creates the
data sets efficiently. For simplicity, however, macros in the origi-
nal programs will typically be resolved before appearing as code
examples in the paper.

Next, annual updates need to be retrieved from the newly cre-
ated data sets. The retrieval process is shown in Figure 4.

Figure 4. Yearly updates are obtained by processing the Cntlout
data sets.

Note from Figure 4 that the second data set in the initial two-by-
two comparison becomes the first one in the next comparison.
PROC SQL is used in the actual processing. The SQL code
below culls updates from the first two cntlout data sets and
stores the results in F2:

create table F2 as
select Early.Start as EStart,

Early.Label as ELabel,
Late.Start as LStart,
Late.Label as LLabel

from DS1 as Early full join DS2 as Late
on Early.Start = Late.Start
where Early.Label ^= Late.Label

;

The full outer join in the SQL command retrieves both deleted
and new codes whereas the selection criteria listed in the on and
where clauses returns updated labels. A left join alone would
return the deleted codes whereas a right join would capture the
new codes. Repeating the SQL command generates tables F3 to
F10. The numeric extension on the name references the latter of
the two tables being compared - mirroring how the update proc-
ess actually works. For example, F10 for 1999 would capture
changes that have occurred between 1998 and 1999.

At this point the four variables in the F* files need to be com-
pressed into variables start and label used in the concatenated
formats. The union set operator is used to differentiate proc-
essing for the three types of update:

Original
Formats

PROC Format
CNTLOUT=

DS
data sets

PROC SQL
Get Updates

F
data sets

PROC SQL
Identify Updates

U
data sets

PROC Format
Cntlin=

PROC Catalog
contents out=

FmtStuff
data set

Call Symput('MaxLen',Maxlen)
to get label width for each Format

Embedded Formats
[$E199*F&Maxlen..]

PROC Format
Cntlin=

Convert Original Formats
to Concatenated Formats

Get Label Widths from
Orignal Formats

Concatenated Format
Example

E1993F

Update Start Update Label

other = [$E1992F9.];

...DS1

Start Label

DS2

Start Label

DS3

Start Label

DS10

Start Label

create table U2 as /*U for update*/
/*additions*/
select LStart as Start, LLabel as Label
from F2
where LStart ^= ‘ ‘ and Estart = ‘ ‘

union
/*deletions*/
select Estart as Start,

“deleted” as Label
from F2
where ESTart ^= ‘ ‘ and Lstart = ‘ ‘

union
/*modifications*/
select LStart as Start, LLabel as Label
from F2
where LStart=EStart and
LLabel ^=ELabel;

Deletions must be labeled with a constant such as deleted so
that the prior undeleted label for a code is not erroneously re-
trieved in a given transaction.

•• Obtaining Label Widths from the Original For-
mats
Embedded formats should always be written with a specific nu-
meric label width appended to the format name. Otherwise SAS
issues a warning message and assigns a value of 40 to the label
width. Labels with more than 40 characters will be truncated.
Here is an example of an embedded format from Shoemaker’s
article:

other=[$LOB12.];

Gerlach and Rinkus also append a width to their embedded date
format, and they show that embedded formats are not restricted
to other assignment statements:

proc format;
value titratf
‘01jan95’d - ‘31dec95’d = ‘Screening’
‘01jan96’d - ‘30-jun97’d = [date7.]
‘01jul97’d - ‘31dec97’d = ‘Post Study’
other= ‘Error’;

run;

Note from the examples above that square brackets rather than
quotes surround embedded formats. They are not text strings.

In the application for longitudinal data, label widths are assigned
dynamically to each of the 10 embedded formats with the
CATALOG procedure:

proc catalog c=library.FORMATS;
contents out=fmtstuff;

run;
data AddLen(Keep=Name MaxLen);
length MaxLen $3;
set fmtstuff;

MaxLen=scan(DESC,3,’,’);
run;

A value for DESC in fmtstuff could be
FORMAT:MAXLEN=5,5,9 with the numbers referencing
maximum lengths for start, end and label fields. The scan
function parses the third word in the string and assigns a value of
9 to MaxLen, the length of the embedded format.

•• Final Assembly with Cntlin
Now that the updates are stored in SAS data sets and the exact
width of label is known, concatenated formats can be built with
control-in data sets. Even though the value assigned to label
below is a character string, the following works as intended:

data Cntlin
(keep=fmtname type hlo start label);
 retain fmtname "$E1992F" type "C";
 set U2 (keep=start label) end=last;
 output;
 if last then do;
 hlo="OF"; label="E1991F9."; output;
 end;
run;
proc format cntlin=Cntlin
 library=Library.EmbCat;
run;

The reason this code works is that multiple-character values can
be assigned to HLO. O means that the range is other, and F
references format or informat. The argument for Label is a
string, and the square brackets have been removed. HLO is also
flexible enough to handle the embedded format in Gerlach’s
example above. Just set HLO to F and label to date7. when
start equals ‘01jan96’d.

New features were added to HLO in release v6.07 meaning that
additional letters can be assigned to this variable besides the
original H, L, or O (SAS Technical Report P-222:
Changes and Enhancements to Base SAS Software,
210). In fact the variable would be better named as HLONRFIS
to capture all of its features.

As the final step in the process, the concatenated formats just
created are stored in a separate catalog so that they can be eas-
ily differentiated from their original counterparts. Also a final
format, CkTimeF, is created with a macro so that the correct
format for decoding can be selected at runtime. CkTimeF is
stored in the same catalog as the concatenated formats:
%macro CkTime(lowtime,hightime);
 proc format library=Library.EmbCat;
 value $CkTimeF
 %do time = &lowtime %to &hightime;
 "&time" = "$E&time.F"
 %end;
 other="Time ERROR"
 ;

 run;
%mend CkTime;
%CkTime(1990,1999);

How the CkTimeF format is used is described in the next sec-
tion.

Using the Concatenated Formats

Now that the concatenated formats have been built, one needs
to learn how to use them. A hard-coded simplified version of the
XX family of formats below is adapted from the LOB formats in
Shoemaker’s article.
 proc format library=Library.EmbCat;
 value $xx1990F /*the base format*/
 'CO'='Commerical'
 'MC'='Medicare'
 'SF'='Self-Funded'
 other='Unknown'
 ;
 value $xx1991F
 'MD'='Medicaid' /*add*/
 'CO'='Deleted' /*delete*/
 'SF'='Single Family' /*modify*/
 other=[$xx1990F11.]
 ;
 value $xx1992F
 'CP'='Compliant' /*add*/
 'SF'='Deleted' /*delete*/
 'MC'='Medicare or Medicaid' /*modify*/
 other=[$xx1991F13.]
 ;
 run;

Unlike the DX formats described earlier, every format in
XX1990F is updated in a subsequent year. Note that the de-
lete type of edit is simply a special instance of the modify edit.
Also a width equivalent to the longest label of the previous
year’s format has been appended to the embedded format.

The XX formats are invoked in the decode data set below.
Highlighted lines of code will be discussed:

options fmtsearch = (library.EmbCat);
data decode;
 length label $20;
 input key $ keydate : mmddyy10.;
 yr=put(year(keydate),4.);
 thisfmt=put(yr,$CkTimeF.);
 if(index(thisfmt,'ERROR')) gt 0 then
 label=thisfmt;
 else
 label=putc(key,thisfmt);
 cards;
 MC 01/01/1991
 MC 01/01/1992
 SF 01/01/1990
 SF 01/01/1991
 SF 01/01/1992
 CP 01/01/1990
 CP 01/01/1992

 XX 01/01/1992
 XX 01/01/1999
 run;

Since the XX formats are stored in a catalog other than
work.formats or library.formats, the fmtsearch option
must be invoked for the put and putc functions to decode data
properly. Next the CKTimeF format is invoked with a four digit
character variable yr that has been derived from the data.
ChkTimeF matches format to year or returns an error if the
value for yr is out of range. Finally, the putc function formats
key by referencing the variable, thisfmt. Because the putc
function references a variable instead of a format, awkward if-
then-else statements do not have to be inserted into the code.
Instead, format selection is easily determined at runtime by the
contents of thisfmt.

The reader is invited to check the output for accuracy:

Data Set DECODE
KEY KEYDATE LABEL
MC 01JAN1991 Medicare
MC 01JAN1992 Medicare or Medicaid
SF 01JAN1990 Self-Funded
SF 01JAN1991 Single Family
SF 01JAN1992 Delete
CP 01JAN1990 Unknown
CP 01JAN1992 Compliant
XX 01JAN1992 Unknown
XX 01JAN1999 Time ERROR

Size Issues

A claim was made earlier in the paper that format concatenation
would significantly reduce the amount of space required for
storing formats. Table 1 below lists sizes of cntlout data sets for
both the original and concatenated (updated) diagnostic formats:

Original #Obs Updated #Obs %Change
DS1 14,284 U1 14,284

DS2 14,303 U2 53 0.371
DS3 14,410 U3 159 1.103
DS4 14,550 U4 202 1.388
DS5 14,703 U5 211 1.435
DS6 14,885 U6 267 1.794
DS7 14,960 U7 99 0.662
DS8 15,034 U8 96 0.639
DS9 15,119 U9 100 0.661
DS10 15,186 U10 87 0.573
Column
Sums

147,434 15,558 8.6257

Table 1. A listing of the number of observations in the cntlout
data sets for the original and concatenated (updated) formats.

The size of the concatenated (updated) data sets is one tenth that
of their original counterparts. The relative size of the corre-
sponding catalogs where the formats are stored is equivalent:

1,017KB v. 10,453KB. Note that every entry is represented
only once in the concatenated formats. In fact, there is so much
redundancy in the original formats that the total size of the con-
catenated formats is only slightly larger than DS10 (15,558 v.
15,186 observations).

An examination of Table 1 also shows that a relatively small
change in percent for an annual update can add up to a sizeable
8.62 percent over a span of ten years. Nevertheless, it should be
noted that a breakout by type of update was not performed in
this exercise. Therefore, if the majority of the updates were addi-
tions, they could be satisfactorily tracked by employing conven-
tional decoding methods. Correspondingly, if there are a lot of
deletes and modifications in the updates, then format concatena-
tion should be considered as an alternative.

Speed Comparisons between Conventional and
Concatenated Formats

While disk space is reduced by a factor of ten for concatenated
formats, a file of codes must be systematically processed to as-
sess the relative efficiency of formatting data with concatenated
and conventional methods.

The (U[pdate]) data sets depicted earlier in Figure 3 as the data
source for the concatenated formats are also used as input for
comparing speeds. All records from a given U[pdate] data set
are assigned a date that is derived from the data set name. For
example, ‘01Jan1999’d is assigned to FDate when all observa-
tions from n99.u10 are being processed. Values for both
DXCode and FDate are written to the V datasets that are later
concatenated to form TestDat containing 15,558 observations
– the same number listed in Table 1 for the concatenated for-
mats.

libname n99 ‘c:\nesug\n99’;
%macro AffixYr;
 %do vsn= 1 %to 10;
 %let year=%eval(1989 + &vsn);
 %let chdate=01jan&year;
 data V&vsn (keep=start FDate
 rename=(start=DXCode));
 retain FDate "&chdate"d;
 set n99.U&vsn;
 run;
 proc append base=TestDat data=V&vsn;
 %end;
%mend AffixYr;
%AffixYr;

The time it takes to format DXCode in TestDat is captured
during testing, and FDate after some manipulation points to
specific format in a library. During testing records in TestDat
are also permuted to eliminate bias from the order in which
codes are formatted. The underlying algorithm for this process is
displayed pictorially in Figure 5. The open triangular arrows
show how the data are generated.

Figure 5. Generating the TestDat data set.

Because the test data and the concatenated formats originate
from the same source, the chance that a given code is formatted
by a more readily accessible updated entry reflects the original
ratio of updated to unaltered codes in the format library. The
underlying assumption here is that new codes are equally as
likely to be formatted as old ones. In other words, all diagnoses
and date combinations are equally represented in a transaction
file.

There is, however, a major limitation to deriving the value for
FDate from a record’s associated format name. If, for example,
format 12345 is modified during 1998, then the date assigned to
FDate in TestDat is 01Jan1998. This assignment unduly short-
ens processing time, because prior formats in a series never have
to be searched for a matching code. To compensate for this bias,
a second data set identical to TestDat is processed with the
value for FDate fixed at 01Jan1999. In this second data set a
backward search for matches is required for all format updates
except those that occur in 1999. Figure 6 is a diagram of the four
decoding methods that are used for comparing speed.

Figure 6. Formatting codes in TestDat with both Concatenated
and original versions of the DX formats.

Concatenated formats are shown on the left side of Figure 6, and
the conventional formats on the right side are diagrammed as
larger rectangles. Table 2 below ranks speeds and shows how
four methods for calculating run times are derived from Figure 6.
Recall that the 1990 concatenated and conventional formats are
duplicates of each other.

 Code Order
Code FDate
A1111 01/01/97

M4321 01/01/98

Z1111 01/01/99

 Permutation
Code FDate
M4321 01/01/98

Z1111 01/01/99

A1111 01/01/97

Randomize

Appended Test
Data Set

...U1
=

1990

U8
=

1997

U9
=

1998

U10
=

1999

concatenated
E* formats

SQL Generated
U(pdate) Data Sets

...1990

1997

1998
1999

1990 1997 1998 1999
...

FDate
=

01Jan1990
FDate

=
01Jan1998

FDate
=

01Jan1990

FDate
=

01Jan1998

FDate
=

01Jan1999

FDate
=

01Jan1999 Permuted
version of
TestDat

Permuted
version of
TestDat

Concatenated Original
All Years 2 4 (slowest)
1999 (Current Year) 3 1 (fastest)

Table 2. 200 permutations of TestDat are programmed for each
format method. While the current configuration is the fastest,
concatenated methods outperform the conventional method where
it is possible to access historically correct formats.

Besides permuting the records in TestDat, the order in which
the four run types are submitted is also permuted. A data set,
pdata, containing decoded values for approximately 15,000
records, is generated for each of the 800 executions of the data
step. Since results from pdata, are not used in subsequent
processing, the data set is simply overwritten each time the data
step is executed. On the other hand, a record of the time it takes
to create pdata needs to be preserved. The time is captured at
the beginning of the data step, and the elapsed time in seconds is
calculated at the end. Here is the code fragment where codes
from TestDat are formatted:

/*two data sets are created:*/
data pdata(keep=dxcode yr thisfmt label)
/* T&i.&&order&j reflects the randomization
 of the runtype*/
 T&i.&&order&j (keep=RunType Elapsed);
 length label $31;
 retain time1;
/*SPROCESS is sorted in permuted order*/
 set sprocess end=last;
 if _n_ = 1 then do;
 current=time();
 hr1=hour(current);
 min1=minute(current)
 sec1=second(current);
 time1=3600*hr1+60*min1+sec1;
 end;
/*yrstring is set to “1999” or
 put(year(datadate),4.)*/
 yr=&yrstring;
/*Depending On &Ltr either original or em-
bedded fmt called*/
 thisfmt=put(yr,$CkTime&Ltr..);
 if(index(thisfmt,'ERR')) gt 0 then
 label=thisfmt;
 else
 label=putc(DXCode,thisfmt);
 output pdata;
 if last then do;
 current=time();
 hr2=hour(current);
 min2=minute(current);
 sec2=second(current);
 time2=3600*hr2+60*min2+sec2;
 elapsed = time2-time1;
 RunNum=&i;
 DataType = &&order&j;
 output t&i.&&order&j.;
 end;
run;

Highlighted lines for thisfmt and label demonstrate that the
same process that was used to format the XX codes earlier is
used with the DX codes here. Elapsed time is calculated by sub-
tracting the initial time from the ending time. Single values for
Elapsed and RunType are saved from each run. Results from
the concatenated 800 one-line data sets are summarized graphi-
cally in Figure 7.

All possible pair-wise comparisons of Wilcoxon Scores in the
NPAR1WAY procedure are significant (Prob> |Z| = 0.0001)
for the data graphed in Figure 7. While the current configuration
of Orig:Fast probably resembles the current version of a con-
ventional format library, it achieves speed at the cost of accu-
racy, since there is no way to retrieve a historically valid label for
an updated format.

What is surprising is how well the embedded formats perform.
According to Figure 7, the worst case scenario requiring the
maximum number of backward searches retrieves formatted
labels faster than searching an individual complete format. The
concatenation method, therefore, appears to confer significant
advantages of speed, accuracy and disk space over its conven-
tional counterpart.

Figure 7. Box plots are used to display the distribution of speeds
for 200 iterations of the four types of runs. The mean is denoted
by a plus sign (+), and the median is marked with a thin wide hori-
zontal line within a plot’s whiskers. The plot is adapted from
Ruzsa and Kalt’s program annoboxn.sas Copyright © by SAS
Institute.

Summary and Conclusions
Format concatenation has been described as a way to eliminate
redundancy from multiple versioned formats that are applied
selectively to longitudinal data. While the flowchart describing
their construction appears to be complex, the actual code for
creating a set of concatenated formats involves the application of
just two SQL statements and one invocation of the CATALOG
procedure. Also decoding data is pretty straightforward with the
output of a format of formats being used as input to the putc

Decode Times by Access Type
T

im
e

 (
Se

co
nd

s)

0

1

2

3

4

A c c e s s T y p e
Embed:Fast Embed:Slow Orig:Slow Orig:Fast

++

++

++

++

m e a n
1 . 5 0

m e a n
2 . 6 5

m e a n
2 . 8 9

m e a n
1 . 1 5

function. As with conventional formats, concatenated formats
can be constructed with control-in data sets.

As mentioned previously, longitudinal data are decoded accu-
rately with concatenated formats. In addition, concatenated for-
mats are economical in terms of disk storage space requirements
and efficient in the time it takes to format a transaction file.

While there are many advantages to having concatenated formats
available for decoding time-dependent data, the initial conversion
process for multiple formats requires an investment of time and
full access to versioned predecessors. Also if the formats interact
with each other, additional problems may arise if they are up-
dated at different time intervals.

References
Gerlach, John and Alan Rinkus. Formats as a Programming

Tool. Proceedings of the 6th Annual SouthEast
SASUsers Group Conference. Norfolk, VA, September
13-15, 1998. 180-186.

Ruza, Peter and Mike Kalt. annoboxn.sas http:/ftp.sas.
com/techsup/download/sample/graph/gplot-boxplot.txt.
Copyright © 1998 by SAS Institute Inc., Cary, NC.

SAS Technical Report P-222: Changes and Enhance-
ments to Base SAS Software: Release 6.07. Cary,
NC: SAS Institute Inc., 1991. 207-217.

Shoemaker, Jack. Advanced Techniques to Build and
Manage User-Defined SAS FORMAT Catalogs.
Proceedings of the 11th Annual NorthEast SAS Users
Group Conference. Pittsburgh, PA. October 4-6, 1998.
102-107.

Author Information

Perry Watts
IMS Health
660 W. Germantown Pike
Plymouth Meeting, PA 19462
610-834-5084
pwatts@us.imshealth.com

