
1 

Make the Most of Your Inheritance with the SAS® ODS Styles.Default Lineage Tracer 
Perry Watts, Independent Consultant, Elkins Park, PA 

 
ABSTRACT 
The ODS Styles.Default lineage tracer lists the sixty lineages of Container style elements that are defined in the ODS 
Styles.Default template for version 9.1.3 SAS. A detailed listing that includes default assignments for associated 
attributes can be retrieved by drilling down on a selected lineage in the home page on the HTML file. By using this 
tool, along with several others, you can make inheritance work for you when you need to customize an ODS-
generated table. 
 
This paper shows by example how to use the lineage tracer to develop new styles from the default template. Inherit-
ance and references to “abstract” style elements are described along with attribute definitions and their default as-
signments. The goal of the paper is to develop a more comprehensive context for style element definitions so that the 
guess-work can be taken out the customization process. Construction of the lineage tracer is described in a separate 
paper: Using Recursion to Trace Lineages in the SAS® ODS Styles.Default Template [4]. 

PROBLEM DEFINITION 
There is no way to organize the Styles.Default template by lineage. Instead, members of any given lineage are widely 
scattered throughout the template. For example in Figure 1, lines 164 to 498 from the template must be scanned to 
locate the six ancestors for the ROWHEADEREMPHASISFIXED style element. The only structural rule that can be 
counted upon is that ancestors precede their descendents in the Styles.Default template. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Because manual traces are so labor intensive, no SAS user paper has been written that deals substantively with in-
heritance from the ODS styles.default template. Without a lineage tracer it is just about impossible to ferret out any 
rules for inheritance. In Figure 2 below, the manual trace from Figure 1 is translated into Lineage #20.  

 

 

 

Figure 1. A partial listing of the ODS Styles.Default template is presented in linear order. Lines 1 to 163 define styles that have 
no ancestors. Examples include FONTS, GRAPHFONTS and COLOR_LIST. CONTAINER also has no ancestors (the FROM 
clause is missing) but all styles of interest in this paper inherit directly or indirectly from CONTAINER. Inheritance below is 
traced by arrows. The highlighted lineage is complete, since ROWHEADEREMPHASISFIXED has no descendents. 
 
164    style Container 
165       "Abstract. Controls all container oriented elements." / 
166       font = Fonts('DocFont') 
167       foreground = colors('docfg') 
168       background = colors('docbg'); 
... 
414    style Cell from Container 
415       "Abstract. Controls general cells."; 
... 
450    style HeadersAndFooters from Cell 
451       "Abstract. Controls table headers and footers." / 
452       font = fonts('HeadingFont') 
453       foreground = colors('headerfg') 
454       background = colors('headerbg'); 
... 
465    style Header from HeadersAndFooters 
466       "Controls the headers of a table."; 
... 
488    style RowHeader from Header   
489       "Controls row headers.";   
... 
495    style RowHeaderEmphasis from RowHeader   
496       "Controls emphasized row headers." /   
497       font = fonts('EmphasisFont');      
498    style RowHeaderEmphasisFixed from RowHeaderEmphasis   
499          "Controls emphasized row headers. Fixed font." /   
500          font = fonts('FixedEmphasisFont'); 



2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additional tools derived from the Lineage Tracer, the styles.default template, and the 9.1.3 ODS User’s Guide help to 
illustrate how inheritance works in PROC TEMPLATE. Sample listings can be found in the Appendix: 

1) A listing of 66 attributes are adapted from the User’s Guide. 28 out of the 66 are colored in light gray to in-
dicate they are not included in the styles.default template.  

2) A color tracer that traces color settings: location → color abbreviation → color → a list of style ele-
ments that use the given color. Style elements polled for information include color_list and colors. (→ = 
‘map to’). Color settings assigned by inheritance to Container style elements are added to the tracer. 

3) A font tracer that traces font settings: font → font name → style elements that use the font. The style 
element polled for information is aptly named fonts.  Font settings assigned by inheritance to Container 
style elements are added to the tracer. 

Colors and fonts require their own tracers, since over 50% of the 184 attributes associated with Container style ele-
ments in the styles.default template reference either colors or fonts. 

INHERITANCE: ABSTRACT VS REGULAR STYLE ELEMENTS  
Abstract and regular style elements are clearly distinguishable in the screen snapshot of the lineage tracer displayed 
in Figure 3. From Figure 3, it can be seen that all lineages contain at least one abstract style element and one regular 
element. All abstract style elements in a lineage precede their regular counterparts. 
 
From Output Delivery System: The Basics and Beyond, abstract style elements are described as follows: 

Some of the ODS style elements inherit attributes from abstract style elements. The only purpose 
of an abstract style element is to provide an element from which many other style elements can in-
herit their attributes [2, p. 370] (italics added). 

If the statement is to be taken at face value, abstract style elements should never be able to play the child role in a 
style element definition. This assumption is tested when STYLE and REPLACE statements are compared in the sec-
tion that follows Figure 3.  

Figure 2. The manual trace from Figure 1 becomes Lineage 20 in the Container Lineage Tracer. Drilling down on the green 
number in the home page of the HTML file brings up detailed information about lineage-associated attributes. 
 

 

 
 

Detailed Listing for Lineage #20 

                
 



3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

STYLE VS REPLACE WITH ABSTRACT STYLE ELEMENTS 
An amended version of the sashelp.shoes data set supports all the examples presented in the paper. Here is how the 
data set has been changed: 

data shoes2(keep=product subsidiary stores rename=(stores=nstores)); 
  set sashelp.shoes; 
  if product in ('Boot','Sandal','Slipper','Sport Shoe'); 
run; 
 
proc sort data=shoes2 out=styleApp.shoes2; 
  by product subsidiary; 
run; 

Assumptions are tested in the tables below. Except for the first table, code for PROC TEMPLATE only is displayed 
along-side output. First up is the default output from the styles.default template. To validate color and font assign-
ments, check Figure 2 plus the font and color tracers. 

1) Default Listing 
Code HTML Output 

 
ods path work.temp(update) 
     sasuser.templat(update) 
     sashelp.tmplmst(read); 
ods html path="&htmPath" (url=none) 
  file='default.html' style=STYLES.DEFAULT; 
  title 'Default Template Output'; 
  proc freq data=styleApp.shoes2; 
    weight nstores; 
    tables product; 
  run; 
ods _all_ close; 
 

 
 

Figure 3. Part of the cover page for the ODS Lineage Tracer. The tracer is contained in an HTML file separate from the paper. 

 



4 

Changing Abstract Style Elements with a STYLE Statement: 
Headers are not changed with a STYLE statement, because HEADERSANDFOOTERS, an abstract style element, 
plays both the child and parent role in the STYLE definition (style child from parent).  

2) Changing HeadersAndFooters Fails with a STYLE Statement  
Code HTML Output 

proc template; 
  define style styles.abstract_style; 
  parent=styles.default; 
 /* from lineage #20 */ 
  style HeadersAndFooters  
   from headersAndFooters / 
     font = (arial,12pt,bold) 
     background=black 
     foreground=white; 
  end;  
run; 
 

 

Changes are not restricted to within-lineage attributes. However, the STYLE definition still fails when 
BORDERWIDTH is set to 5 pixels.  

3) Changing an Out-Of-Lineage Attribute Still Fails with a STYLE Statement  
Code HTML Output 

proc template; 
  define style styles.abstract_style2; 
  parent=styles.default; 
 /* from lineage #20 */ 
  style HeadersAndFooters  
   from headersAndFooters / 
    borderwidth=5; 
  end;  
run; 
 

 
 
Changing Abstract Style Elements with a REPLACE Statement: 
ODS output can be customized when REPLACE is substituted for STYLE. Now row and column headers reflect the 
changes made to the attributes associated with HEADERSANDFOOTERS.  

4) Changing an Abstract Style Element Succeeds with a REPLACE Statement  
Code HTML Output 

proc template; 
   define style styles.abstract_Replace; 
   parent=styles.default; 
  /* from lineage #20 */ 
   replace HeadersAndFooters / 
     font = (arial,12pt,bold) 
     background=black 
     foreground=white; 
   end;  
 run; 
 

  

REPLACE comes with some pitfalls, however. To avoid surprises, specify values for all attributes associated with an 
abstract style in the styles.default template. In Table 5 below, only the out-of-lineage attribute borderwidth is spe-



5 

cified. As a result, default values from Container are assigned to foreground, background, and font in 
HEADERSANDFOOTERS. 

5) Results are Surprising when Attribute Changes with REPLACE are Incomplete 
Code HTML Output 

/* font, background, and foreground are not 
specified. */ 
proc template; 
  define style styles.abstract_replace2; 
  parent=styles.default; 
 /* from lineage #20 */ 
  replace headersAndFooters / 
    borderwidth=5; 
  end;  
run; 
 

  
By consulting the lineage, font, and color tracers, HEADERSANDFOOTERS and CONTAINER can be compared: 

DEFAULT HeadersAndFooters (See Table 3): 
  font = fonts('HeadingFont') = "arial, helvetica, sans-serif",4,bold 
  foreground = colors('headerfg') = cx0033aa (lighter blue) 
  background = colors('headerbg') = cxb0b0b0 (darker gray) 
DEFAULT Container (See Table5): 
  font = Fonts('DocFont') = "arial, helvetica, sans-serif",3  (implied regular font-weight) 
  foreground = colors('docfg') = cx002288  (darker blue) 
  background = colors('docbg') = cxe0e0e0  (lighter gray) 

Colors and fonts can be verified by matching output in Tables 3 and 5 with the attribute settings listed above. In Table 
5, however, the emboldened header is unexpected, since “bold” is not in the font setting. It would appear that PROC 
FREQ takes precedence over ODS when it comes to applying font-weights to headers. To restore header defaults 
along with a border width, all attributes must be defined with REPLACE: 

6) Default Fonts and Colors are Specified Along with a Border Width with REPLACE 
Code HTML Output 

proc template; 
  define style styles.abstract_replace3; 
  parent=styles.default; 
 /* from lineage #20 */ 
  replace headersAndFooters / 
   font = fonts('HeadingFont') 
   foreground = colors('headerfg') 
   background = colors('headerbg') 
   borderwidth=5px; 
  end;  
run; 
 

 
An expanded REPLACE headersAndFooters FROM headersAndFooters would not work in Table 6, because 
REPLACE destroys HEADERSANDFOOTERS before it can be referenced by FROM! In this situation, ODS just tra-
verses up the lineage and deposits CONTAINER defaults into the output. 

STYLE VS REPLACE WITH REGULAR STYLE ELEMENTS 
The regular style elements that are being considered in this section are HEADER and ROWHEADER. They have no 
attributes associated with them in the Styles.Default template. In the ODS User’s Guide it is stated that there are two 
ways to modify existing style elements:  

o change only the style element that you specify by using the STYLE statement (bold italics added) 
o change the style element that you specify and all the style elements that inherit from that element by using 

the REPLACE statement [3, p. 335]. 
As we just saw, STYLE doesn’t work with abstract style elements, but it does work as advertised with regular style 
elements. Again we illustrate inheritance for regular style elements using the shoes2 data set. The next example un-



6 

derscores the range of the STYLE statement in ODS. Only the HEADER is changed. ROWHEADER retains the de-
faults from the Styles.Default template. 

7) ROWHEADER does not Inherit from HEADER when STYLE is Used 
Code HTML Output 

proc template; 
  define style styles.Regular_style; 
  parent=styles.default; 
/* from lineage #20 */ 
  STYLE Header / 
    font = (arial,12pt,bold) 
    background=black 
    foreground=white; 
  end;  
run; 
 

 
To get the same format for HEADER and ROWHEADER, use a REPLACE statement: 

8) ROWHEADER Inherits from HEADER when REPLACE is Used 
Code HTML Output 

proc template; 
  define style styles.Regular_style2; 
  parent=styles.default; 
/* from lineage #20 */ 
  REPLACE Header / 
    font = (arial,12pt,bold) 
    background=black 
    foreground=white; 
  end;  
run; 
 

 

THE SPECIAL CASE OF THE JUSTIFICATION ATTRIBUTES (VJUST AND JUST)  
When border widths were set to 5 pixels in Table 6, we learned that the choice of attributes available for modification 
is not restricted by lineage affiliation. However, font settings in Table 5 hint at conflicts between ODS and formatting 
defaults set by other procedures. In Table 5, the header font was emboldened by PROC FREQ even though the de-
fault setting in ODS called for a medium font weight. Similar issues arise for the JUST and VJUST attributes in Tables 
9 and 10 below. In Table 9, PROC FREQ dictates the header format whereas PROC PRINT calls for different format-
ting in Table 10. 

9) PROC FREQ Determines the Justification of HEADERS and ROWHEADERS 
Code HTML Output 

proc template; 
  define style styles.HeadersJust; 
  parent=styles.default; 
/* FROM LINEAGE #20*/ 
  style header/ 
    font = (arial,12pt,bold) 
    background=black  foreground=white 
    cellwidth=1in  cellheight=0.8in 
    vjust=top   /* GET BOTTOM */ 
    just=left;  /* GET RIGHT */ 
  style rowheader/ 
    font = (arial,12pt,bold) 
    background=black  foreground=white 
    cellheight=0.5in 
    vjust=top   /* WORKS TOP, MIDDLE, BOTTOM */ 
    just=right; /* GET LEFT */ 
  end; 
run; 

 



7 

For verification, match code line comments to table output. Inconsistencies are noted between attribute assignments 
and the line comments. For example, even though JUST is set to LEFT for in the HEADER style statement, right justi-
fication is what occurs (except for “Product” which is left-justified like the other row headers).  
 
In Table 10, an attempt is made to left-justify the row header inside ODS. However, since ROWHEADER is reserved 
for the observation number in PROC PRINT, right justification prevails. (This time “Obs” appears as a center-justified 
header, not a right-justified row header). 

10) PROC PRINT Determines the Justification of HEADERS and ROWHEADERS 
Code HTML Output 

proc template; 
  define style styles.HeadersJust2; 
  parent=styles.default; 
/* FROM LINEAGE #20*/ 
  style header/ 
    font = (arial,12pt,bold) 
    background=black  foreground=white 
    cellwidth=1in  cellheight=0.8in 
    vjust=top    /* WORKS TOP MIDDLE BOTTOM */ 
    just=right;  /* GET CENTER */ 
  style rowheader/ 
    font = (arial,12pt,bold) 
    background=black  foreground=white 
    cellheight=0.5in 
    vjust=bottom /* WORKS TOP MIDDLE BOTTOM */ 
    just=left;   /* GET RIGHT */ 
  end; 
run; 
 

 

THE ROLE OF FROM IN A STYLE ELEMENT DEFINITION  
A from clause has to be used when the list of lineage attributes being modified in a given STYLE or REPLACE state-
ment is incomplete. In this situation, default values from the from style element supply the missing settings. From 
figure 2, it can be seen that three attributes are defined in Lineage #20. They are font, foreground and back-
ground. In the examples that follow no more than two out of the three attributes are assigned in any single style 
statement.  
 
The most common form of inheritance is for the child element to inherit default settings for attributes from its imme-
diate ancestor, the parent. In Table 11, only the font and foreground attributes are being changed for HEADER. 
The darker gray background color comes from HEADERSANDFOOTERS. Note in the second panel that inherit-
ance works when ROWHEADER is specified with a style-from statement that points to the newly reformatted 
HEADER. REPLACE (from HEADERSANDFOOTERS), as expected, duplicates the output from the second panel in 
Table 11. 
 



8 

 
Child elements can also inherit directly from any lineage ancestor. In Table 12, HEADER and ROWHEADER back-
ground colors come from CONTAINER, the common ancestor. 

 

11) Style Element Inheritance from a Parent with a FROM Clause 
Code HTML Output 

/*  
The header background color comes from 
HEADERSANDFOOTERS 
*/ 
proc template; 
  define style styles.from1; 
  parent=styles.default; 
/* from lineage #20 */ 
  style Header from HeadersAndFooters / 
    font = (arial,12pt,bold) 
    foreground=red; 
  end; 
run; 
 

 
/*  
In the second STYLE statement, the CHILD inhe-
rits from the newly formatted PARENT that was 
a CHILD in the first STYLE statement. 
*/ 
proc template; 
   define style styles.from2; 
   parent=styles.default; 
 /* from lineage #20 */ 
   style Header from HeadersAndFooters / 
     font = (arial,12pt,bold) 
     foreground=red; 
   style rowheader from header; 
   end; 
 run; 
 

 

/*  
HEADERSANDFOOTERS supplies the darker gray 
background color to HEADER. With REPLACE, 
ROWHEADER inherits the adjusted changes from 
HEADER. 
*/ 
proc template; 
   define style styles.from3; 
   parent=styles.default; 
 /* from lineage #20 */ 
   replace Header from HeadersAndFooters / 
     font = (arial,12pt,bold) 
     foreground=red; 
   end;  
 run; 
 

 

12) Style Element Inheritance from an Early Ancestor with a FROM Clause 
Code HTML Output 

/*  
The HEADER and ROWHEADER background colors 
come from CONTAINER, the common ancestor. 
*/ 
proc template; 
  define style styles.from4; 
  parent=styles.default; 
/* from lineage #20 */ 
  replace Header from Container / 
    font = (arial,12pt,bold) 
    foreground=red; 
  end;  
run; 
 
 

 



9 

Occasionally child elements inherit from themselves. This type of inheritance occurs when a desired default setting is 
located in the child style element. Since no defaults are assigned to HEADER or ROWHEADER in Lineage #20, the 
DATA style element with two attributes shown in Figure 3 is being used instead. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Table 13, the default DATA background color is being retained. It is the same shade of light gray that appears in all 
the data cells from the preceding table displays. However, the foreground (font) color is being changed from black to 
red, and courier-new is being used for the font-face.  

 
While counter-intuitive, it is possible for an ancestor to inherit directly from a descendent. In Table 14, ROWHEADER 
inherits from grandparent HEADERSANDFOOTERS but HEADER inherits attribute settings from its newly reformat-
ted child, ROWHEADER. This is an unusual turn of events, because in conventional object-oriented languages such 
as C++, inheritance is exclusively one-way: from ancestor to descendent (or from base class to derived class). 
 

13) Style Element Inheritance from SELF with a FROM Clause 
Code HTML Output 

/*  
The DATA background color comes from DATA 
*/ 
proc template; 
  define style styles.from5; 
  parent=styles.default; 
/* from lineage #2 */ 
  style data from data / 
    font = ("courier new",10pt,bold) 
    foreground=red; 
  end;  
run; 
 

 

Figure 3. Only the foreground color from the DATA style element is changed in Table 13 below. (As an aside, FONT from 
CONTAINER will also be changed). 
 

 

 
 

Detailed Listing for Lineage #2 

 



10 

Also counterintuitive is the ability to program cross-lineage inheritance in ODS. In Table 15 HEADER and 
ROWHEADER in Lineage #20 inherit FONT, FOREGROUND, and the default setting for BACKGROUND from DATA 
in lineage #2. 

 

INHERITANCE: ODS vs C++  
It is obvious from Tables 14 and 15 that there are significant differences between ODS and C++ when it comes to 
how classes (style elements) relate to each other. In C++ a new, derived class is created from an existing base class. 
The derived class incorporates all the features of the base class, and then adds needed embellishments [1, p. 333]. 
For example, CAR could be defined as a base class, and CHEVY with its particular logo and body design could be 
derived from CAR. Furthermore, CAR, with a few modifications, could be transformed into an ABSTRACT class. 
Then only CHEVY “objects” encompassing CAR properties could be created. CARs, as separate entities, could not 
come into existence on their own [1, p.504]. 
 
In the case of ODS, it is difficult to know if style elements are classes or objects, since associated attributes are as-
signed values in the default template. (Variables are defined for C++ classes. Objects come into existence when val-
ues are assigned to those variables). With blurred boundaries between class and object in ODS it is also difficult to 
understand just what is meant by ABSTRACT. Earlier it was shown that abstract style elements in ODS could be di-
rectly modified by substituting REPLACE for STYLE in a template definition. In C++ such a manipulation would not be 
possible, since objects cannot be created from abstract classes.  
 
However, with the greater flexibility, it becomes possible to physically trace inheritance by lineage in ODS. In Table 
16, the domains of the first five style elements in Lineage #20 are traced by adding borderwidth and borderco-
lor attributes to both abstract and regular style element definitions. 
 
From Table 16, it can be seen that the tracings become more restricted as the lineage is traversed. CONTAINER, for 
example, encompasses both the BODY and CONTENTS windows (including slider bars) whereas ROWHEADER 

14) Style Element Inheritance from a Descendent with a FROM Clause 
Code HTML Output 

/*  
For inheritance from child to parent to work 
properly, the child element must be defined 
BEFORE the parent element. 
The default HEADER and ROWHEADER background 
colors remain in effect.  
HEADER inherits font settings from ROWHEADER.  
*/ 
proc template; 
  define style styles.from6; 
  parent=styles.default; 
/* from lineage #20 */ 
  style rowheader from headersAndFooters / 
    font = (arial,12pt,bold) 
    foreground=red; 
  style header from rowheader / 
    foreground=blue; 
  end;  
run; 

 

15) Style Element Inheritance from a Different Lineage 
Code HTML Output 

/*  
Now, DATA, HEADER, and ROWHEADER have the same 
format. 
*/ 
proc template; 
  define style styles.from7; 
  parent=styles.default; 
 /* from lineage #2 */ 
  style data from data / 
    font = ("courier new",10pt,bold) 
    foreground=red; 
 /* from lineage #20 */ 
  style header from data;   
  style rowheader from header;      
end;  
run; 

 



11 

overlays just the first data column in a table that is viewed exclusively from the BODY window. Again, the contrast 
between ODS and C++ is noticeable. The base class in C++ is smaller, not larger, than its derived classes.  
 

 
SUMMARY AND CONCLUSIONS 
Tracking inheritance in the ODS Styles.Default template becomes possible with assistance from a lineage tracer. 
With a lineage tracer abstract elements can be distinguished from their regular counterparts, ancestors can be readily 
identified, and in-lineage attributes can be separated from non-relatives. When such distinctions are made, guidelines 
can be established for working more effectively with style element modifications. For example, by checking the status 
of a particular style element in the lineage tracer, we learned that abstract elements could only be changed with 
REPLACE, whereas both STYLE and REPLACE work with different results on regular style elements.  

With a lineage tracer it is also possible to verify that the FROM keyword is only needed when attribute defaults are to 
be transferred to an updated style element. Many examples that featured FROM highlighted the flexibility of ODS 
inheritance. Style elements can obtain default values from parents, distant ancestors, themselves and even their des-
cendents!  

16) Output Mappings for the First Five Style Elements in Lineage #20 

 
 

CONTAINER covers both CONTENTS and BODY windows including the slider bars. 

                        
 CELL covers HEADER, DATA and FOOTER 

          

HEADERSANDFOOTERS covers HEADER, ROWHEADER 
and FOOTER. (Most of DATA is excluded). 

         
HEADER covers HEADER only  

     

ROWHEADER covers ROWHEADER only 

         



12 

It was also demonstrated in the paper that non-lineage attributes can be added to a style element in a new template. 
If successfully added, the new attribute can be passed on to descendents in accordance with the rules for inheritance. 
Unfortunately, however, outcome with non-lineage attributes can be unpredictable. Sometimes, as in the case of 
just and vjust, a conflict may arise between ODS and PROCEDURE settings. If such a conflict arises, the PROC 
always prevails. Non-lineage attributes illustrated in the paper include borderwidth, bordercolor, just, 
vjust, cellwidth and cellheight (See gray highlighted entries in Tables 9 and 10 for the last two). 

Probably it is not a good idea to try to shoehorn ODS inheritance into the C++ object-oriented framework. ODS is a 
unique construct with its own rules for transferring information from one style element to another. 

COPYRIGHT STATEMENT 
The paper, Make the Most of Your Inheritance with the SAS® ODS Styles.Default Lineage Tracer, is protected by 
copyright law. This means if you would like to paraphrase original ideas, adapt output from figures or attachments for 
your own use, or quote text from the paper in any type of publication you are welcome to do so. All you need to do is 
to cite the paper. For all uses that result in corporate or individual profit, written permission must be obtained from the 
author. Conditions for usage have been modified from http://www.whatiscopyright.org. 

REFERENCES  
[1] Lafore, Robert. The Waite Group® Object-Oriented Programming in C++ Second Edition. Corte Madera, CA: 

Waite Group Press, 1995.  
[2] Haworth, Lauren E., Cynthia L. Zender, and Michele M. Burlew. Output Delivery System: The Basics and 

Beyond. Cary, NC: SAS Institute Inc., 2009.  
[3] SAS Institute Inc. SAS® 9.1 Output Delivery System: User’s Guide.  Cary NC: SAS Institute Inc., 2004.  
[4] Watts, Perry. Using Recursion to Trace Lineages in the SAS® ODS Styles.Default Template. Proceedings of the 

23rd Annual Northeast SAS Users Group Conference. Baltimore, MD, 2010, paper #BB13. 

TRADEMARK CITATION  
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration. 
Other brand and product names are registered trademarks or trademarks of their respective companies. 

CONTACT INFORMATION  
Please send comments and requests for the Lineage Tracer to mailto:perryWatts@comcast.net 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:perryWatts@comcast.net�


13 

APPENDIX  
1) ATTRIBUTE LISTING 
 

Attribute listing from the 9.1.3 ODS Manual 
(Gray Attributes are not found in the ODS STYLES.DEFAULT Template) 

Attribute Definition Legitimate Values 
ACTIVELINKCOLOR Color for active links Any valid SAS color 

ASIS How leading spaces and line breaks are handled ON or OFF. If OFF then leading spaces are 
trimmed, line breaks ignored. 

BACKGROUND Background color Any valid SAS color 
BACKGROUNDIMAGE Background image ‘string’ where string is the name of a GIF or JPEG 

file identified with a simple file name, a complete 
path, or a URL. Easiest approach: use a simple 
filename and place all image files in the local di-
rectory. 

BODYSCROLLBAR Scroll bar in the body file frame YES | NO | AUTO, where AUTO specifies “only if 
needed”. 

BODYSIZE Frame width for body file in HTML nonnegative number + a unit of measurement 
(e.g. IN, CM, MM, PT) --OR-- integer% of entire 
display 

BORDERCOLOR Single border color Any valid SAS color. 

BORDERCOLORDARK Darker color used in a 3-D 2-color border. Any valid SAS color. 
BORDERCOLORLIGHT Lighter color used in a 3-D 2-color border. Any valid SAS color. 

BORDERWIDTH Table border width nonnegative number + a unit of measurement 
(e.g. IN, CM, MM, PT) 

BOTTOMMARGIN Bottom margin for a document nonnegative number + a unit of measurement 
(e.g. IN, CM, MM, PT) 

BULLET Bullet string in the contents file Bullets=’string’ where string = ‘circle’, ‘decimal’, 
‘disc’, lower-alpha, lower-roman, ‘none’, ‘square’, 
upper-alpha, or upper-roman (I, II, III) 

CELLHEIGHT Cell Height nonnegative number + a unit of measurement 
(e.g. IN, CM, MM, PT) --OR-- integer% of table 
height 

CELLPADDING Amount of white space surrounding text in a cell nonnegative number + a unit of measurement 
(e.g. IN, CM, MM, PT) --OR-- integer% of table 

CELLSPACING Space between cells nonnegative number + a unit of measurement 
(e.g. IN, CM, MM, PT) 

CELLWIDTH Cell width nonnegative number + a unit of measurement 
(e.g. IN, CM, MM, PT) --OR-- integer% of table 
width 

CONTENTPOSITION HTML contents frame location LEFT | RIGHT | TOP | BOTTOM  Alias(L,R,T,B) 

CONTENTSCROLLBAR Scroll bar in the contents and page files YES | NO |AUTO (AUTO means only when ne-
cessary) 

CONTENTSIZE Frame width for contents frame in HTML nonnegative number ( in pixels) --OR-- integer% of 
entire display 

FILLRULEWIDTH Overlay a rule onto the white space surrounding  
text in a cell 

nonnegative number + a unit of measurement 
(e.g. IN, CM, MM, PT) 

FLYOVER Text shown in a tool tip for the cell ‘string’ 
FONT FONT= [face(s), size, keywords]. Keywords= font 

weight and font style.  The destination device 
uses the first installed font 

Syntax: "font-face-1 <... , font-face-n>", font-size, 
keyword-list  myfont=("arial, helvetica", 4, bold 
roman)  myfont=(Arial, 2pt, medium italic) 

FONT_FACE Font Face font-face-1 <... , font-face-n> 

FONT_SIZE Font size A nonnegative number + a unit of measurement  
OR relative size (range=1-7) 

FONT_STYLE Font style ITALIC | ROMAN |SLANT 

FONT_WEIGHT Font weight MEDIUM | BOLD most popular. Other choices 
exist. 

FONT_WIDTH Font width Few fonts honor font widths (e.g. compressed, 
narrow). 



14 

Attribute Definition Legitimate Values 
FOREGROUND Foreground color Any valid SAS color 
FRAME Frame definitions for an HTML table ABOVE= BELOW= a border at top OR bottom.  

BOX =borders all around.  HSIDES= VSIDES 
borders at top and bottom OR left and right side. 
LHS = RHS=a border at the left side OR right side. 
VOID= no borders. 

FRAMEBORDER Border for an HTML frame ON | OFF 

FRAMEBORDERWIDTH Border width for an HTML frame nonnegative number + a unit of measurement 
(e.g. IN, CM, MM, PT) 

FRAMESPACING Space between HTML frames Integer only (no units of measurement defined) 
HREFTARGET Target window of link _BLANK for new window. _PARENT for source 

window. _SEARCH for browser's search pane. 
_SELF for current window (default). _TOP for the 
topmost window. 'name' for a specified window or 
frame. 

HTMLCLASS Stylesheet class for table or cell ‘string’ 

HTMLCONTENTTYPE Content type for pages sent directly to a web 
server rather than to a file 

‘string’ 

HTMLDOCTYPE Doctype declaration for an HTML document = 
opening "<!DOCTYPE" and the closing ">" 

‘string’ 

HTMLID ID for table or cell ‘string’ 
HTMLSTYLE Individual attributes and values for table or cell ‘string’ 

INDENT Indention depth n=number of spaces. Default: 2 for XML, 0 every-
thing else 

JUST Justification CENTER | DEC | LEFT | RIGHT   (DEC means at 
decimal points) 

LEFTMARGIN Document left margin nonnegative number + a unit of measurement 
(e.g. IN, CM, MM, PT) 

LINKCOLOR Unvisited link color Any valid SAS color 
LISTENTRYANCHOR Turn link to a table of contents entry on or off. ON|OFF 

LISTENTRYDBLSPACE Double space between entries in the table of 
contents 

ON|OFF 

NOBREAKSPACE How spaces are handled. ON: SAS won’t break a line at a space character. 
OFF: SAS will break a line at a space character. 

OUTPUTHEIGHT Graphics Height in a document n(in pixels) 
OUTPUTWIDTH Table Width n(pixels) OR n% (of window) 

OVERHANGFACTOR Upper limit for column width extension n (a factor). A value between 1 and 2 is typical. 
PAGEBREAKHTML HTML placed at page breaks ‘string’ 

POSTHTML HTML code that goes after table or cell ‘string’ 

POSTIMAGE Image after table or cell 'string' | fileref  names a GIF or JPEG file. ‘string’ 
includes  a simple filename, complete path, or 
URL. 

POSTTEXT Text after cell or table ‘string’ 
PREHTML HTML code before HTML table or cell ‘string’ 

PREIMAGE Image before table or cell 'string' | fileref  names a GIF or JPEG file. ‘string’ 
includes  a simple filename, complete path, or 
URL. 

PRETEXT Text before table or cell ‘string’ 

PROTECTSPECIALCHARS Interpret less-than signs (<), greater-than signs 
(>), and ampersands (&) 

ON | OFF | AUTO   ON means characters not part 
of HTML. OFF means they are. 

RIGHTMARGIN Right margin for a document nonnegative number + a unit of measurement 
(e.g. IN, CM, MM, PT) 

RULES Lines within a table ALL=between all rows and columns. COLS be-
tween all columns.  GROUPS between the table 
header and the table and between the table and 
the table footer, if there is one.  NONE no rules 
anywhere.  ROWS between all rows 

TAGATTR Text inserted in the HTML code ‘string’ 



15 

Attribute Definition Legitimate Values 
TOPMARGIN Top margin for a document nonnegative number + a unit of measurement 

(e.g. IN, CM, MM, PT) 

URL Specify target URL ‘Uniform-Resource-Locator’ 
VISITEDLINKCOLOR Visited link color Any valid SAS color 

VJUST Vertical justification BOTTOM | MIDDLE | TOP 

WATERMARK Translate the target for BACKGROUNDIMAGE 
into a "watermark. A watermark appears in a fixed 
position as the window is scrolled 

ON|OFF 

 
2) COLOR TRACER (Sample Output.  The complete listing is in the HTML file associated with the paper) 
 

Color Tracer for the SAS STYLES.DEFAULT Container Lineages 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



16 

3) FONT TRACER  (Sample Output.  The complete listing is in the HTML file associated with the paper) 
 

Font Tracer for the SAS STYLES.DEFAULT Container Style Elements 
 

 
                                                                           ●●●                                     

 


