
1

Highlighting Inconsistent Record Entries in EXCEL:
Possible with SAS® ODS, Optimized in Microsoft® DDE

Perry Watts, Independent Consultant Fox Chase Cancer Center
Copyright © 2004 Perry Watts

Abstract
While ODS-HTML output to EXCEL easily accommodates column-based color highlighting with format
invocations in PROC REPORT, the method does not work when color assignments for record inconsistencies
depend on relative values in multiple columns. If DATE1 is supposed to come before DATE2, for example, the
following DEFINE statements will not work as intended:

define date1/ display style=[background=$ColorF.];
define date2/ display style=[background=$ColorF.];

Inputs to these formats are the dates supplied by DATE1 and DATE2, not the required row and column identifiers
needed for assigning colors based on the relationship between two variables in a single observation.

This paper describes two methods for highlighting inconsistent record entries in an EXCEL spreadsheet. The first
method uses PROC REPORT to generate ODS-HTML output to EXCEL. However, the column restrictions in the
DEFINE statement described above are circumvented by removing the formats and invoking a macro that assigns
background colors from a COMPUTE block. Unfortunately PROC REPORT becomes prohibitively slow when the
formats are removed. An alternative solution using Dynamic Data Exchange (DDE) with EXCEL version 4 Macro
Language (X4ML) is described. Not only is DDE faster than ODS-HTML, but the formatted output is superior.

Mouse Data Set: Before and After Color Highlighting with ODS-HTML and DDE
A very simple data set, MOUSEDAT, containing 4 columns of data for eight mice is sufficient for explaining the
concepts described in this paper. Age is expected to be between 11 and 29 days, and RXDate#1 comes before
RXDate#2. Both treatments occur in 2004. Figure 1 shows the data in plain and highlighted formats.

Figure 1. Data entry errors are more easily detected when MOUSEDAT is highlighted in EXCEL with ODS-HTML or DDE.

Before Highlighting: Superficially, the data look fine with
the exception of a couple of missing values and a negative
AGE for Mouse #3.

After with DDE: The same output is generated, but the titles
are properly centered over columns A-D, and all cells in the
spreadsheet are outlined. DDE and ODS-HTML colors also
match perfectly.

After with ODS-HTML: The data reveal additional problems.
Some mice are either too young or too old. Others have
treatment dates that are out of order. Note too that treatment
dates for mouse #6, age 19 days, are over a year apart.

2

Out-of-range values for AGE in MOUSEDAT can easily be handled by a format associated with a column in ODS-
HTML. However, formats cannot be used to determine when individual treatment dates are out of order. Format
ranges are always column-bound, but the highlights in the AFTER panels in Figure 1 are based on the
relationship between two dates. Note, for example, that the RXDATE#2 with the same value is highlighted for
Mouse #4, but it is not for Mice #1 and #3. Again, what is being evaluated is the relationship between dates not
their absolute values. Relationship type errors such as the ones displayed in Figure 1 are likely to occur when
data are manually entered from paper forms into EXCEL workbooks lacking validity checks.

Working with ODS-HTML in Version 8.2
Chevell Parker describes how to use PHTML and HTML tagsets to generate an EXCEL spreadsheet in his paper
Generating Custom Excel Spreadsheets using ODS [9],p.1. PHTML, undefined in the paper and "experimental" in
SAS 8.2, fails to transfer assigned background colors to the EXCEL file. This failure may be replicated in SAS 9.1,
since PHTML has been described elsewhere as a limited tagset producing "a basic HTML that uses twelve style
elements and no class attributes" [10],p.6. Fortunately, the HTML tagset is sufficient for producing the highlighted
output shown in the lower-left panel of Figure 1:

ods html
 file="c:\N04\BgHighlight\XLS\MouseChkODSnewest.xls"
 STYLE=styles.Withborder;
title1 "<td COLSPAN=3 align=center>
 Edit Sheet for Mouse Study </td>";
title2 "<td align=Center COLSPAN=3>
 Green=Missing Yellow=Dates Out of Order Blue=Outlier Red=Error
 </td>";

 The only requirement for redirecting output to an EXCEL file is to specify an XLS extension.
 WITHBORDER inherits all properties from the MINIMAL style. Only BORDER is changed from thick to thin and
from black to gray. The goal here is to make the output blend seamlessly into EXCEL. WITHBORDER almost
succeeds except that borders are only defined for the output data set and headers, not the entire spreadsheet.
Below is the source code for the WITHBORDER style:

proc template;
 define style styles.Withborder;
 parent=styles.minimal;
 style table /
 borderwidth=1
 bordercolor=#909090
 rules=all;
 end;
run;

Initial background colors are assigned properly in the MINIMAL style and its derivative, WITHBORDER. This
means that the ODS-HTML generated spreadsheet inherits color settings from the DISPLAY device in the
WINDOWS Control-panel. Some Windows users substitute light gray for white backgrounds in order to reduce
screen glare.
 Columns B-D are spanned for the titles, not A-D as intended. If COLSPAN were set to 4, the output would
even be more askew.
 Regardless of the value assigned to FONT SIZE, two lines of output are generated instead of one.

Highlighting Inconsistent Record Entries in ODS-HTML
Now that the ODS destination commands have been issued, erroneous, missing and inconsistent values for
RXDATE1 and RXDATE2 need to be color-coded for easy detection. The three steps required for completing this
task are similar to those used for constructing the color charts shown in the NESUG-15 paper Working with RGB
and HLS Color Coding Systems in SAS Software [15]Watts,pp.2-3.

1) Create the MOUSECOLORS data set that assigns background colors to RXDATE1 and RXDATE2 by
MOUSEID. MOUSEID ranges from 1 to n, the number of mice in a study.

2) Derive macro variables from MOUSECOLORS that are resolved in a SELECT macro issued from a compute-
block in PROC REPORT.

3) Invoke PROC REPORT to create the spreadsheet.

Step #1: Create the MOUSECOLORS Data Set
The background colors assigned in MOUSECOLORS are derived from the relative values for TEST1DT and
TEST2DT in MOUSEDAT:

3

data MouseColors(keep=MouseID t1Colr t2Colr);
 length green default yellow red $8;
 retain default "&defaultColor";
 retain green "CXDCFFDC"; *-- MISSING VALUES;
 retain Yellow "CXF2F6A8"; *-- Test2dt < Test1dt;
 retain Red "CXFF0000"; *-- ERRONEOUS VALUES;
 array NV{*} test1dt test2dt; *-- Numeric Variable;
 array NVColr{*} $8 t1Colr t2Colr;
 set mouseDat;

 *-- COLOR MISSING AND ERRONEOUS VALUES WITH ARRAYS;
 do i=1 to dim(NV);
 if NV[i] eq . then NVColr[i]=green;
 else if NV[i] lt '31DEC2003'd then NVColr[i]=Red;
 else NVColr[i]=default;
 end;
 *-- IDENTIFY LATERAL INCONSISTENCIES WITH CROSS-VARIABLE CHECKING;
 if Test2dt le Test1dt and Test1dt gt '31DEC2003'd and Test2dt gt '31DEC2003'd then
 do;
 t1Colr=Yellow; t2Colr=Yellow;
 end;
run;

 While the WITHBORDER style will assign default background colors properly, an assignment of MISSING to
either T1COLR or T2COLR in the MOUSECOLORS data set will generate an ERROR message in the LOG.
This bug is difficult to detect. Despite the error messages, the output looks fine! The macro variable
DEFAULTCOLOR is set at the top of the program. It is also used in the format for highlighting AGE in PROC
REPORT.
 Here is where the default color is assigned. Unlike ODS-HTML, DDE does not have a problem with default
colors. Color values only need to be assigned to cells requiring highlighting.

Step #2: the SELECT Macro
The SELECT macro invoked from a compute block in PROC REPORT assigns correct background colors to
Columns #3 (TEST1DT) and #4 (TEST2DT) with a SELECT statement:

%macro select;
 select (MouseId);
 %do i = 1 %to &nobs;
 when (&i.)
 do;
 CALL DEFINE("test1Dt" ,"STYLE", "STYLE=[BACKGROUND=&&Column3_&i.]");
 CALL DEFINE("test2Dt" ,"STYLE", "STYLE=[BACKGROUND=&&Column4_&i.]");
 end;
 %end;
 otherwise;
 end;
%mend select;

 CALL DEFINE used within a COMPUTE block "sets the value of an attribute for a particular column in the current
row" [12]SAS Institute,p.899. The syntax for the command is:

CALL DEFINE (column-id, 'attribute-name', value);

In this application, there is a one-to-one correspondence between MOUSEID and the macro variable i. This
means that each time a data record is processed in PROC REPORT, a second poll of the same data set must be
taken inside the COMPUTE block to match MOUSEID with i. Processing can get bogged down when thousands
of records are involved. One way to save time is to assign colors for both variables in a single loop. This is done
by defining column-ids in the CALL DEFINEs as quoted constant literals pointing to the variables that are being
highlighted. The automatic variable _COL_ does not work as a column-id, because it would reference MOUSEID
not TEST1DT or TEST2DT. For additional information about COMPUTE blocks in PROC REPORT, see
[1]Buchanan,pp.298-300 and [7]Pass,pp.5-6.

 Macro variables must be used for assigning background colors in a COMPUTE block, because the STYLE=
value in CALL DEFINE calls for unquoted constant text, not a SAS variable.

4

Step #3: Invoking PROC Report
Here is how the background colors in the first after panel in Figure 1 are derived from PROC REPORT in ODS:

ODS HTML … ;
proc report data=mouseDat nowindows
 style(Header)=[font_weight=BOLD font_style=Italic];

 columns mouseID age test1Dt test2Dt;
 define mouseID / display "MouseID" center;
 define age / display "Age(days)" center
 style(column)=[font_weight=Medium background=AgecFmt.];
 define test1Dt / display "RxDate #1" center;
 define test2Dt / display "RxDate #2" center;
 compute MouseId;
 %select
 endcomp;
run;
ODS HTML Close;

 Locations such as HEADER and COLUMN should be specified in the STYLE statements or the output won't be
formatted properly. See chapter 32, The Report Procedure in the SAS Procedures Guide for a complete list of
style locations [12],p.890. Sue Cross demonstrates their use in her paper Create a Living Report from
Various Parts [2],pp.367-369.
 Since age anomalies can be determined by the value for AGE alone, a format is sufficient for making background
color assignments. Probably it would have been more efficient to include AGE in the COMPUTE block along with
TEST1DT and TEST2DT. That way, the binary search required for formatting could have been eliminated.
 MOUSEID is needed for determining the correctness of the relative values for TEST1DT and TEST2DT.
MOUSEID is the row-identifier, and TEST1DT and TEST2Dt in the SELECT macro are the column-identifiers.
Row and Column identifiers, as mentioned in the abstract, are needed for assigning colors based on the
relationship between two variables in a single observation.

Communication between SAS and EXCEL in ODS-HTML
Communication between SAS and EXCEL is non-interactive in ODS-HTML. This means that EXCEL must be
closed in order to receive all directives in a single file transfer from SAS. SAS provides a RESULTS VIEWER to
compensate for the break in communication. Furthermore, each time a SAS program is re-executed the output
XLS file is deleted and recreated afresh, unless EXCEL is left opened by mistake. In those instances an ERROR
message is generated and the XLS file is locked.

The ODS-HTML single-pass method just described is not as flexible as DDE where formats and data can be
applied in layers to an opened spreadsheet file. Even when MOUSEDAT and MOUSECOLORS are sent to an
EXCEL spreadsheet in the same ODS-HTML session, they occupy different blocks of cells in the output. Layering
has to be achieved manually. To get the layered output in the right panel of Figure 2, the following steps must be
completed in EXCEL:

1) Copy and paste MOUSEDAT in the lower part of the left-panel to a separate sheet.
2) Copy and paste-special (formats) to transfer background colors and formats from MOUSECOLORS to the

same location in the target spreadsheet. The HEX color codes in the source spreadsheet are left behind. Only
their format that includes font color is transferred.

3) Reformat TEST1DT and TEST2Dt as dates in the target spreadsheet. Replace dots (.) with space characters
to denote missing values.

4) Re-size the headers so that the titles are fully visible.

Using ODS in the data step to bind data to a table definition created in PROC TEMPLATE doesn't work for
layering output either. CELLSTYLE in the Template Procedure's DEFINE COLUMN statement has the same
limitation as using a format in a DEFINE statement in PROC REPORT; namely, other columns cannot be
referenced when style elements in a given column are defined [11]SAS Institute,p. 171.

5

Additional Problems with ODS-HTML and ODS-XML
The ODS-HTML protocol also lacks versatility. Chevell Parker points out that XML rather than HTML must be
used to modify page setup, generate and name multiple worksheets in a workbook, add formulas, select cells,
generate charts, and scale printed output; all very basic operations [9],p 4.

However, XML also has its limitations. Vincent DelGobbo in From SAS to Excel via XML mentions that graphics
transfers to EXCEL via XML are not supported by Microsoft [4],p.3, and that there are limitations to using the new
Version 9 ExcelXP tagset. For example, while it is no longer necessary to work directly with XML in Version 9,
DelGobbo cautions that the new tagset cannot be used to resize text cells [4],p.6 or to configure non-rectangular
data [4],p.11. Also the user does not have full latitude in naming columns or selecting worksheet names. Instead,
column headers are derived from variable labels or column numbers [4],p11, and EXCEL sheet names must reflect
SAS data set names in their displays [4],p.9. With these requirements, a serious workaround would have to be
developed to accommodate the 18-sheet DDE display of SASHELP.CLASS shown in Figure 3. While XML-
compatible labels are used as column headers in Figure 3, variable names would work just as well in a DDE
display. The SASHELP.CLASS workbook can be downloaded from the file attachment associated with the
companion paper, Using Single-Purpose SAS® Macros to Format EXCEL Spreadsheets with DDE [14] Watts.

Figure 2. MOUSECOLORS and MOUSEDAT pictured in the left panel are transferred to EXCEL in a single ODS-HTML
session. Once inside EXCEL, spreadsheets are manipulated by hand to produce the layered output shown on the right.

Figure 3. DDE allows the user full latitude in naming spreadsheets. In this display 18 different EXCEL auto-formats are
applied to the SASHELP.CLASS data set by exercising DDE commands inside a SAS program.

DDE number 3 references the Classic 3 EXCEL auto-format. DDE number 10 references the List 1 EXCEL auto-format.

6

The DDE Solution for Highlighting Inconsistent Records Entries
Layering is an integral part of the DDE solution. In fact Dynamic Data Exchange (DDE) is defined as a
"mechanism that permits two applications to talk to each other by continuously and automatically exchanging
data" [5]Microsoft,p.209. EXCEL is opened on the desktop so that data and formatting instructions can be
transferred serially via DDE triplets and doublets. Additional details about these constructs along with a
description of the EXCEL 4 Macro Language (X4ML) used in DDE transfers to EXCEL can be found in the
companion paper, Using Single-Purpose SAS® Macros to Format EXCEL Spreadsheets with DDE [14] Watts. It is
advisable to read the companion paper first, since the single-purpose macros used in this application are
described there. In Table 1 the necessary steps for generating a DDE highlighted spreadsheet are listed along
with references showing where additional information can be found.

Table 1: Algorithm for Highlighting Inconsistent Record Entries in an EXCEL Spreadsheet

Step Task Sub-Task More Information

1 Create MOUSEDAT Source code (cards statement) in Appendix.
Identical for both ODS-HTML and DDE.

2 Define New Colors for DDE See below

3 Create MOUSECOLORS

See ODS-HTML discussion above. The only
difference between ODS-HTML and DDE is that
there is no need for defining default background
colors in DDE.

4 Create BGCOLORS that provide
cell locations for highlighted colors See below

5 Transfer data to EXCEL Mouse Data via triplet Companion paper (macro WriteDStoXLS)

 Titles via triplet Companion paper and source code.

 Data Set headers via triplet Companion paper (macro HdrWvblLabel)

 BGCOLORS via doublet See below

6 Format Spreadsheet Title Companion paper (macro formatTitle)

 Headers Companion paper (macro formatHeaders)

 Body Companion paper (macro formatBody)

 Resize Body cells See source code and companion paper for X4ML
syntax

 Insert diving line after headers. Companion paper (macro insertLineDivider)

Using Colors in DDE
DDE can take advantage of EXCEL's versatility when it comes to assigning background colors to a spreadsheet.
Contrary to Vyverman (only a 16-color palette) [13],p.3 and DelGobbo (support for only particular colors) [3],p.3
EXCEL is capable of displaying 256³ or 16+ million colors. However, only 56 of them can be viewed in a session.
SAS/GRAPH software works identically, except that the maximum is increased to 256 colors per graphics display.

Working with color in DDE is not so straight-forward, however. Default colors are identified by ordinal number (1-
56) and not by RGB code as is the case for ODS-HTML. Therefore, to get a match in DDE, the following code
must be executed:

data _null_;
 file DDECmds;
 put '[edit.color(16,170,170,170)]'; %*GRAY FOR BORDERS;
 put %unquote(%bquote('[edit.color(35,%RGBDEC(CXDCFFDC))]')); %* light green;
 put %unquote(%bquote('[edit.color(36,%RGBDEC(CXF2F6A8))]')); %* yellow;
 put %unquote(%bquote('[edit.color(22,%RGBDEC(CXFF0000))]')); %* red;
 put %unquote(%bquote('[edit.color(37,%RGBDEC(CX7070FF))]')); %* dark blue;
 put %unquote(%bquote('[edit.color(41,%RGBDEC(CXDCDCFF))]')); %* light blue;
run;

7

 See the companion paper for a discussion about DDECMDS as a doublet in DDE.
 EDIT.COLOR is the X4ML command used for assigning an RGB color code to an EXCEL color number. Panel 2
in Figure 4 below shows how the X4ML palette is affected.
 EXCEL uses decimals to represent color codes whereas SAS uses hexadecimals. The RGBDEC macro function
converts from hexadecimal to decimal. While colors #36 and #37 haven't changed much in Figure 4, a perfect
match to ODS-HTML colors is guaranteed, because the RGB coding system is universal.

In Figure 4, EXCEL X4ML and 2002 color mapping systems are displayed together with an X4ML altered list that
shows how the EDIT.COLOR command works inside EXCEL. X4ML developed in 1990 is based on EXCEL
version #4 in use at the time. The color mappings are completely different in EXCEL 2002. Note, for example, that
the first eight colors in Panel 1 are primary or secondary colors whereas black is the only primary color found in
the first row of the EXCEL 2002 palette.

Highlighted cells are non-rectangular in EXCEL
Macro variables that feed the COMPUTE block in ODS-HTML are replaced by data values from the BGCOLORS
data set in DDE. Both configurations use MOUSECOLORS for input, but ODS-HTML links MOUSEID and
COLUMN to a color, whereas a color in DDE is assigned to a cell address such as "R6C2''. Below is SAS code for
creating BGCOLORS:

data BGColors(keep=RowCol Color);
 retain rowOffset &rowOffset.;
 retain colOffset &colOffset.;
 array ColorV{*} ageColr t1Colr t2Colr;
 set mouseColors;
 do i=1 to dim(ColorV);
 if ColorV[i] ne . then do;
 color=ColorV[i];
 row= _n_ + rowOffset;
 col= i + colOffset;
 RowCol=compress('R'||(left(row)||'C'||left(col)));

Figure 4. EXCEL color mappings have changed over the years. Panel #1 shows the X4ML default colors in vogue during
the 1990s. Selected color codes are changed in Panel #2 for the Mouse Study, and EXCEL 2002 default colors are
displayed in Panel #3. Output from the Mouse Study is copied and pasted for convenience from Figure 1 into Panel #4.

Panel 1: EXCEL was capable of working with 56 colors in
1990.

Panel 2: Colors #16, #22, 35-37, and 41 have been changed
in SAS by EDIT.COLOR. They are used in Panel #4.

Panel 3: Default colors from the Patterns window in FORMAT
CELLS from EXCEL 2002 are ordered differently from those
in Panel 1.

Panel 4: Mouse Study spreadsheet from Figure 1 uses
custom colors outlined above in Panel 2.

8

 output;
 end;
 end;
run;

 ROWCOL stands for row-column not row-color. COLOR stands for background color.
 Offsets are implemented as macro variables. ROWOFFSET for MOUSEDAT would be set to 3 to accommodate
two titles and a row of headers. COLOFFSET would be set to 2, because MOUSEID is never assigned a
background color.
 Here is where un-highlighted cells are skipped over. Background colors are non-rectangular in composition
because with so many missing values, no observable pattern for row or column display is detected in the output.
 A value is assigned here to ROWCOL. X4ML syntax treats internal spaces as errors. Therefore, the
COMPRESS function must be used to correctly generate a cell address in row-column format.

Values from BGCOLORS are inserted into the target spreadsheet by exercising an implicit loop in the DATA
NULL step below.

filename ddeCMDS dde 'excel|system';
data _null_;
 file ddeCmds;
 set BGColors ;
 if _n_ eq 1 then do;
 put '[workbook.activate("sheet1")]';
 put %unquote(%bquote('[select("r&stRow.c1:r&nrows.c&nvar")]'));
 put '[clear(1)]';
 put '[border(,1,1,1,1,,,15,15,15,15)]';
 end;
 put '[select("' rowCol +(-1) '")]';
 put '[patterns(1,0,' color +(-1) ')]';
run;

 Looping is implicit in the SET statement.
 From Figure 4 Panel 4, r4c1:r11c4 would be defined as the parameter in the SELECT function with the gray
dividing line between headers and data being added later. In the next PUT statement cell contents and formats
from previous runs are CLEARED to eliminate the possibility of unwanted side-effects caused by layering output,
and finally in the last PUT statement associated with the IF condition, thin gray cell borders are drawn around
cells in the data region so that highlighted cells in the region will be in conformance with all cells in the
spreadsheet. Otherwise, cell borders would automatically be erased when background colors are inserted.
 One cell is selected at a time from the BGCOLORS data set.
 A background color is inserted into the selected cell.

DDE is more efficient than ODS-HTML when it comes to assigning background colors. First, there is no need to
process default colors in DDE, and secondly COLOR in the BGCOLORS data set is a variable, not a constant
literal requiring a second pass at a data set to resolve an associated macro variable.

The method used for assigning background colors in DDE is also similar to the one described by William C.
Murphy in Give Your Clients What They Want: Fill Report Tables with the SAS® System and DDE. [6]. Instead of
background colors, data values are assigned to unordered individual cells in a non-rectangular spreadsheet
template with data _NULL_ and a SET statement. Murphy uses a DDE triplet rather than a doublet to handle the
data transfer, however.

Identified Layers in the DDE Solution
From Table 1 and the discussion about color above, DDE layers become programming steps in SAS. The layer-
steps are identified as:

1) Write out title lines.
2) Format the titles.
3) Write out the header line.
4) Format the header line.
5) Assign background colors.
6) Write out table values (body).
7) Format the body.
8) Align the body.

9

9) Insert gray line to separate headers from body.

When layering is employed, the code becomes modular resulting in an application that is both transparent and
modifiable.

Summary and Conclusions
Two methods for highlighting inconsistent record entries in an EXCEL spreadsheet have been described in this
paper. ODS-HTML uses a COMPUTE block in PROC REPORT to assign background colors by row and column
name whereas DDE uses a doublet inside data _NULL_ to assign a background color directly by cell address.
DDE is more efficient than ODS-HTML, requiring only one pass at the data. Default color values can also be
ignored in DDE. Titles and headers are formatted better in DDE, and color selection is not limited as previously
assumed to the 56 colors in the X4ML palette. Finally, for this application, it is doubtful that DDE can be replaced
by the newest ODS-XML configuration, since the Version 9 ExcelXP tagset doesn't work with a non-rectangular
data.

Copyright Statement
The paper, Highlighting Inconsistent Record Entries in EXCEL: Possible with SAS® ODS, Optimized in
Microsoft® DDE, is protected by copyright law. This means if you would like to use part or all of the original ideas
or text from this document in a publication where no monetary profit is to be gained, you are welcome to do so. All
you need to do is to cite the paper in your reference section along with the copyright symbol. For ALL other uses
that result in corporate or individual profit, written permission must be obtained from the author.
Conditions for usage have been modified from http://www.whatiscopyright.org.

Trademark Citation
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their respective companies.

Contact Information
The author welcomes feedback via email at perryWatts@comcast.net

References
[1]Buchanan, Laurie. Using Compute Blocks to Enhance PROC REPORT Output. Proceedings of the 10th Annual

Northeast SAS Users Group Conference, Baltimore, MD, 2001, pp.298-300.
[2]Cross,Sue. Create a Living Report from Various Parts. Proceedings of the 14th Annual Northeast SAS Users

Group Conference, Baltimore, MD, 2001, paper # ET5001.
[3]DelGobbo, Vincent. A Beginner's Guide to Incorporating SAS® Output in Microsoft® Office Applications.

Proceedings of the Twenty-Eighth SAS User Group International Conference, Cary, NC: SAS Institute
Inc., 2002, paper #52.

[4]DelGobbo, Vincent. From SAS to Excel via XML. http://support.sas.com/rnd/papers/sugi29/ExcelXml.pdf.
[5]Microsoft Corporation. Visual Basic User's Guide: Automating, Customizing, and Programming in Microsoft

Excel with the Microsoft Visual Basic Programming System, Applications Edition. Document XL57927-0694.
Printed in the United States of America, 1993.

[6]Murphy, William C. Give Your Clients What they Want: Fill Report Tables with the SAS® System and DDE.
Proceedings of the 15th Annual Northeast SAS Users Group Conference, Buffalo, NY, 2002, paper # PS025.

[7] Pass, Ray and Sandy McNeill. PROC REPORT: Doin' It in Style. Proceedings of the 15th Annual Northeast SAS
Users Group Conference, Buffalo, NY, 2002, paper # AT004.

[8]Pass, Ray and Sandy McNeill. PROC TABULATE: Doin' It in Style. Proceedings of the Twenty-Ninth SAS
User Group International Conference, Cary, NC: SAS Institute Inc., 2004, paper #085.

[9]Parker, Chevell. Generating Custom Excel Spreadsheets using ODS. Proceedings of the Twenty-Eighth SAS
User Group International Conference, Cary, NC: SAS Institute Inc., 2003, paper #12.

[10]http://support.sas.com/rnd/base/topics/odsmarkup/markup_stmt.html. Using ODS to Export Output in a
Markup Language. Accessed 5/25/2004. Last updated 9/5/2003.

10

[11]SAS Institute Inc. The Complete Guide to the SAS® Output Delivery System, Version 8. Cary, NC: SAS
Institute Inc., 1999.

[12]SAS Institute Inc. SAS® Procedures Guide, Version 8. Cary, NC: SAS Institute Inc., 1999.
[13]Vyverman, Koen. Creating Custom Excel Workbooks from Base SAS® with Dynamic Data Exchange: A

Complete Walkthrough. Proceedings of the Twenty-Seventh SAS User Group International Conference,
Cary, NC: SAS Institute Inc., 2002, paper #190.

[14]Watts, Perry. Using Single-Purpose SAS® Macros to Format EXCEL Spreadsheets with DDE. Proceedings of
the 17th Annual Northeast SAS Users Group Conference. Baltimore, MD, 2004, paper #ap06.

[15]Watts, Perry. Working with RGB and HLS Color Coding Systems in SAS Software. Proceedings of the 15th
Annual Northeast SAS Users Group Conference. Buffalo, NY 2002, paper #ps013.

Appendix
Source code for the ODS-HTML and DDE SAS-to-EXCEL highlighting applications are included below.
/* ---
 Program : RowTrafficLightingODS.sas

 Author : Perry Watts
 Date : 01Apr2004 06:19

 Project : N04 Row Traffic Lighting
 Path :

 Purpose : Do lateral (row-based) error checking by color coding cell background
 colors in an EXCEL spreadsheet where green means MISSING, yellow means
 attributes out-of-order, blue means attribute out-of-bounds, and red
 means ERROR. Use PROC REPORT in ODS output to an EXCEL file via HTML.

 Notes : **MouseChkODS.xls must NOT be opened on the desktop when this
 program is executed.
 **See pages 198-208 in ODS manual for STYLE attributes.
 **See See chapter 32, page 890 The Report Procedure in v8 Procedures
 Guide for STYLE locations.
 **Can leave DEFAULT color values (white or light gray) set to
 missing but if you do, the following ERROR messages will be
 written to the LOG:
 ERROR 22-322: Syntax error, expecting one of the following: a name,
 a format name, DMBLACK, DMBLUE, DMBROWN,
 DMCYAN, DMGRAY, DMGREEN, DMMAGENT, DMORANGE, DMPINK,
 DMRED, DMSBLACK, DMSBLUE, DMSBROWN,
 DMSCYAN, DMSGRAY, DMSGREEN, DMSMAGENTA, DMSORANGE,
 DMSPINK, DMSRED, DMSWHITE, DMSYELLOW,
 DMWHITE, DMYELLOW, SYSBACK, SYSFORE, SYSSECB, _UNDEFINE_,
 UNDEF, _UND_.
 ERROR 76-322: Syntax error, statement will be ignored.
 Hence create a macro variable DEFAULTCOLOR to take WINDOWS default
 color.

 Input : CARDS

 Output : MouseChkODS.xls
 Copyright: Copyright(C) 2004 Perry Watts
 -- */
 options date number pageno=1;
 options nomprint;
 options noxsync noxwait;
 options missing=' ';
 footnote1;

 %let defaultColor=CXFFFFFF; *-- white;

 *-- GET INPUT DATA;
 data mouseDat(keep=mouseID age test1dt test2dt);
 attrib test1dt test2dt informat=mmddyy10. format=mmddyy10.;
 infile cards missover;
 input mouseID age test1dt test2dt;
 cards;
 1 25 01/07/2004 01/14/2004
 2 9 01/20/2004 01/24/2004

11

 3 -2 . 01/14/2004
 4 85 01/20/2004 01/14/2004
 5 24 01/01/2004 01/07/2004
 6 19 01/08/2003 01/22/2004
 7 29 01/07/2004 01/07/2004
 8 5 01/02/2004 .
 run;

 *-- ASSIGN ROW COLORS TO TEST1 AND TEST2. EXPECTED: TEST1 >= TEST2;
 data MouseColors(keep=MouseID t1Colr t2Colr);
 length green default yellow red $8;
 retain default "&defaultColor";
 retain green "CXDCFFDC"; *-- MISSING VALUES;
 retain Yellow "CXF2F6A8"; *-- Test2dt < Test1dt;
 retain Red "CXFF0000"; *-- ERRONEOUS VALUES;
 array NV{*} test1dt test2dt; *-- Numeric Variable;
 array NVColr{*} $8 t1Colr t2Colr;
 set mouseDat;

 *-- COLOR MISSING AND ERRONEOUS VALUES WITH ARRAYS;
 do i=1 to dim(NV);
 if NV[i] eq . then NVColr[i]=green;
 else if NV[i] lt '31DEC2003'd then NVColr[i]=Red;
 else NVColr[i]=default; /*IF OMIT, WILL GET ERR MSG LISTED IN HEADER. */
 end;
 *-- IDENTIFY LATERAL INCONSISTENCIES WITH CROSS-VARIABLE CHECKING;
 if Test2dt le Test1dt and Test1dt gt '31DEC2003'd and Test2dt gt '31DEC2003'd then
 do;
 t1Colr=Yellow; t2Colr=Yellow;
 end;
 run;

 *-- ROW|COLUMN-BASED MACRO VARIABLES ARE CREATED WHERE MOUSEID MAPS TO
 COLUMN COLORS BASED ON VALUES IN THE MOUSECOLORS DATA SET.;
 data _null_;
 set mouseColors end=last;
 call symput('Column3_'||left(put(MouseID,1.)),t1Colr);
 call symput('Column4_'||left(put(MouseID,1.)),t2Colr);
 if last then
 call symput('nobs',left(put(_n_,3.)));
 run;

 *-- INVOKED FROM PROC REPORT;
 %macro select;
 select (MouseId);
 %do i = 1 %to &nobs;
 when (&i.)
 do;
 CALL DEFINE("test1Dt" ,"STYLE", "STYLE=[BACKGROUND=&&Column3_&i..]");
 CALL DEFINE("test2Dt" ,"STYLE", "STYLE=[BACKGROUND=&&Column4_&i..]");
 end;
 %end;
 otherwise;
 end;
 %mend select;

 *-- ATTRIBUTE-BASED OR COLUMN OUTLIER VALUES CAN BE IDENTIFIED BY FORMAT WHERE START
 VALUES REPRESENT MOUSE AGE IN DAYS. <0=ERROR, 0-9=TOO YOUNG, 10-29=OK, 30+=TOO OLD
 (FABRICATED);
 proc format;
 value AgeCfmt low - <0="CXFF0000" 0-<10="CX7070FF"
 10-<30="&defaultColor" 30-high="CXDCDCFF";
 run;

 *-- WRITE COLORS OUT TO AN EXCEL SPREADSHEET WITH ODS. EXCEL MUST NOT BE OPENED.;
 *-- IN-LINE COMMENT;
 ods html
 file="c:\N04\BgHighlight\XLS\MouseChkODSnewest.xls"
 STYLE=styles.Withborder;
 title1 "<td colspan=3 align=center>
 Edit Sheet for Mouse Study </td>";
 title2 "<td align=Center colspan=3>
 Green=Missing Yellow=Dates Out of Order Blue=Outlier Red=Error</td>";

12

 proc report data=mouseDat nowindows style(Header)=[font_weight=BOLD font_style=Italic];
 columns mouseID age test1Dt test2Dt;
 define mouseID / display "MouseID" center;
 define age / display "Age(days)" center
 style(column)=[font_weight=Medium background=AgecFmt.];
 define test1Dt / display "RxDate #1" center;
 define test2Dt / display "RxDate #2" center;
 compute MouseId;
 %select
 endcomp;
 run;

 ods html close;
 ods listing;

==
/* ---
 Program : RowTrafficLightingDDE.sas

 Author : Perry Watts
 Date : 21Feb2004 07:24

 Project : N04 Row Traffic Lighting

 Purpose : Write data set variables to a background-color coded Excel
 spreadsheet that highlights lateral data errors.

 Notes : **Compare program to RowTrafficLightingODS.sas. This program uses
 DDE instead of ODS output to HTML. MouseChkDDE.xls, therefore
 must be opened on the desktop when this program is executed.
 DDEcmds :
 EDIT.COLOR(color_num, red_value, green_value, blue_value)
 Color_num is a number from 1 to 56 specifying one of the 56
 color palette boxes for which you want to set the color.
 red_value, green_value, and blue_value are DECIMAL numbers from
 0 to 255.

 Input : CARDS

 Output : MouseChkDDE.xls
 Copyright: Copyright(C) 2004 Perry Watts
 -- */
 options mprint mautosource;
 options sasautos=(sasautos 'c:\N04\DDEwSASMac\sasauto');
 options date number pageno=1 source2;
 options noxsync noxwait;
 options missing=' ';

 Footnote1;
 title1;

 /* CONVERT RGBHEX THAT SAS UNDERSTANDS TO RGBDEC FOR MICROSOFT*/
 %macro RGBDec(CXrrggbb);
 %local rr gg bb;
 %let rr=%substr(&CXrrggbb,3,2);
 %let gg=%substr(&CXrrggbb,5,2);
 %let bb=%substr(&CXrrggbb,7);
 %let DecCode= %sysfunc(compress(%sysfunc(putn(%sysfunc(inputn(&rr,hex2.)),z3.))
 %sysfunc(putn(%sysfunc(inputn(&gg,hex2.)),z3.))
 %sysfunc(putn(%sysfunc(inputn(&bb,hex2.)),z3.))));
 %substr(&DecCode,1,3),%substr(&DecCode,4,3),%substr(&DecCode,7,3)
 %mend RGBDEC;

 *-- TO ISSUE X4ML (EXCEL-VSN4-MACRO LANGUAGE) COMMANDS;
 filename ddeCMDS dde 'excel|system';

 *-- MATCH DDE AND ODS OUTPUT COLORS;
 data _null_;
 file DDECmds;
 put '[edit.color(16,170,170,170)]'; *-- CHANGE COLOR #16 TO A LIGHTER GRAY FOR BORDERS;
 put %unquote(%bquote('[edit.color(35,%RGBDEC(CXDCFFDC))]')); %* light green;
 put %unquote(%bquote('[edit.color(36,%RGBDEC(CXF2F6A8))]')); %* yellow;
 put %unquote(%bquote('[edit.color(22,%RGBDEC(CXFF0000))]')); %* red;
 put %unquote(%bquote('[edit.color(37,%RGBDEC(CX7070FF))]')); %* dark blue;
 put %unquote(%bquote('[edit.color(41,%RGBDEC(CXDCDCFF))]')); %* light blue;

13

 run;

 *-- GET INPUT DATA;
 data mouseDat(keep=mouseID age test1Dt test2Dt);
 retain mouseID age test1Dt test2Dt;
 attrib test1dt test2dt informat=mmddyy10. format=mmddyy10.;
 infile cards missover;
 input mouseID age test1Dt test2Dt;
 label MouseID="MouseID"
 age="Age(Days)"
 test1Dt="RxDate #1"
 test2Dt="RxDate #2";
 cards;
 1 25 01/07/2004 01/14/2004
 2 9 01/20/2004 01/24/2004
 3 -2 . 01/14/2004
 4 85 01/20/2004 01/14/2004
 5 24 01/01/2004 01/07/2004
 6 19 01/08/2003 01/22/2004
 7 29 01/07/2004 01/07/2004
 8 5 01/02/2004 .
 run;

 %let rowOffset=3; *-- TO ACCOMMODATE TWO TITLES AND HEADERS;
 %let colOffset=1; *-- TO ACCOMMODATE UNCHECKED MOUSEID (PK): IN COLORING DATASET ONLY;
 %let rc=%sysfunc(open(mouseDat));
 %let nVar = %sysfunc(attrn(&rc,NVARS));
 %let nobs = %sysfunc(attrn(&rc,NOBS));
 %let nrows=%eval(&nobs + &rowOffset);
 %let startRow=%eval(&rowOffset +1);
 %let nvar=%left(&nvar);
 %let rc=%sysfunc(close(&rc.));

 *-- ASSIGN ROW COLORS TO TEST1 AND TEST2. EXPECTED: TEST1 >= TEST2;
 data mouseColors(keep=mouseID ageColr t1Colr t2Colr);
 retain green 35; *-- MISSING VALUES;
 retain Yellow 36; *-- Test2Dt <= Test1Dt;
 retain Red 22; *-- ERRONEOUS VALUES;
 retain DkBlue 37; *-- OUT-OF-BOUNDS (OUTLIER TOO LOW);
 retain LtBlue 41; *-- OUT-OF-BOUNDS (OUTLIER TOO HIGH);
 array NV{*} test1Dt test2Dt; *-- Numeric Variable;
 array NVColr{*} t1Colr t2Colr;
 set mouseDat;

 /* COLUMN-BASED COLOR ASSIGNMENTS -- BASED ON ONE VARIABLE ONLY*/
 *-- IDENTIFY AGE ERRORS;
 if Age lt 0 then AgeColr=Red;
 else if Age ge 0 and age lt 10 then AgeColr=DkBlue;
 else if Age ge 30 then AgeColr=LtBlue;

 *-- COLOR MISSING AND ERRONEOUS VALUES WITH ARRAYS;
 do i=1 to dim(NV);
 if NV[i] eq . then NVColr[i]=green;
 else if NV[i] lt '31DEC2003'd then NVColr[i]=Red;
 end;

 /* ROW-BASED COLOR ASSIGNMENTS -- BASED ON MORE THAN ONE VARIABLE*/
 if Test2dt le Test1dt and Test1dt gt '31DEC2003'd and Test2dt gt '31DEC2003'd then
 do;
 t1Colr=Yellow;
 t2Colr=Yellow;
 end;
 run;

 data BGColors(keep=RowCol Color);
 retain rowOffset &rowOffset.; *-- FOR TITLE AND HEADERS;
 retain colOffset &colOffset.; *-- FOR CASENUM WHICH IS NOT CHECKED;
 array ColorV{*} ageColr t1Colr t2Colr;
 set mouseColors;
 do i=1 to dim(ColorV);
 if ColorV[i] ne . then do;
 color=ColorV[i];
 row= _n_ + rowOffset;
 col= i + colOffset;
 RowCol=compress('R'||(left(row)||'C'||left(col)));

14

 output;
 end;
 end;
 run;
 proc print data=BGColors;
 run cancel;
 /* *****
 Some OUTPUT:
 Row
 Obs color Col
 1 36 R3C4
 2 37 R4C2
 9 37 R10C2
 10 35 R10C4
 ***** */

 /* PRINT TITLE LINES*/
 filename title dde "excel|[MouseChkDDE.xls]sheet1!r1c1:r2c&nvar" notab;
 data _null_;
 file title;
 put "Edit Sheet for Mouse Study";
 put "Green=Missing Yellow=Dates Out of Order Blue=Outlier Red=Error";
 run;
 filename title clear;
 /* FORMAT TITLES*/
 %formatTitle(MaxCol=&nvar, Fontsize=12, Row=1, RowHeight=20)
 %formatTitle(MaxCol=&nvar, Fontsize=10, Row=2, RowHeight=15)

 /* PRINT HEADER */
 filename HEADERS dde "excel|[MouseChkDDE.xls]sheet1!r3c1:r3c&nvar" notab;
 data _null_;
 file HEADERS;
 put %HdrWvblLabel(dsName=mouseDat)
 run;
 filename HEADERS clear;
 /* FORMAT HEADER */
 %formatHeaders(fontSize=9, Row=3, MaxCol=&nVar)

 /* ASSIGN BACKGROUND COLORS (PROCESS DATA SET: BGCOL)*/
 filename ddeCMDS dde 'excel|system';
 data _null_;
 file ddeCmds;
 set BGColors;
 if _n_ eq 1 then do;
 put '[workbook.activate("sheet1")]';
 put %unquote(%bquote('[select("r&startRow.c1:r&nrows.c&nvar")]')); *-- SELECT DATA MATRIX;
 put '[clear(1)]'; *-- FROM PREVIOUS RUNS;
 put '[border(,1,1,1,1,,,15,15,15,15)]'; *-- BORDER EACH CELL;
 end;
 put '[select("' rowCol +(-1) '")]'; *-- SELECT A CELL;
 put '[patterns(1,0,' color +(-1) ')]'; *-- APPLY BACKGROUND COLOR;
 run;

 /* WRITE BODY*/
 filename ddedata dde
 "excel|[MouseChkDDE.xls]sheet1!r&startRow.c1:r&nrows.c&nvar" notab;

 data _null_;
 set mouseDat;
 file ddedata;
 put %WriteDStoXLS(dsName=mouseDat)
 run;

 /* FORMAT BODY*/
 %formatBody(CmdFileName=ddeCmds, fontSize=9, MinRow=&startRow, Maxrow=&nrows, MinCol=1, MaxCol=&nVar);

 /* ALIGN BODY*/
 data _null_;
 file ddeCmds;
 put %unquote(%bquote('[select("r&startRow.c1:r&startRow.c&nVar")]'));
 put '[alignment(3,2)]'; *-- CENTER VERTICALLY AND HORIZONTALLY;
 put %unquote(%bquote('[column.width(20,"C1:C&nVar.")]'));
 put %unquote(%bquote('[row.height(0,"r&startRow.:r&nvar",false,3)]')); *-- AUTO FIT ROW HEIGHT;
 run;

15

 /* INSERT THIN GRAY LINE UNDER THE HEADERS. THIS MUST BE THE LAST COMMAND */
 %insertLineDivider(row=4, maxCol=&nvar)

 quit;

