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2006: “Improved utilization of adaptive
and Bayesian methods” could help
resolve the low success rate of and
expense of phase lll clinical trials

2013: FDA will need to "turn the
clinical trial paradigm on its head” to
allow personalized drug therapies to
get on the market faster
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Bayesian Updating

> Paired observations, Tvs C
> P(S) = P(T wins pair)
> Hy: P(S) =1/2

> Data: SSFSS FSSSF
SFSSS SS

Prob:
412

Example: Troxacitabine in AML*
(endpoint: CR by day 50)

Standard design

Idarubicin
Ara-C

Trox
Idarubicin

Trox
Ara-C

* Giles JCO 2003
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Example: Troxacitabine in AML*
(endpoint: CR by day 50)

Our design

Idarubicin .
Ara-C Adaptive

randomization

Trox to learn, while
Idarubicin effectively

treating

Trox patients in trial
Ara-C

* Giles JCO 2003

Adaptive Randomization

e Assign with higher probability to
better performing therapies

o Tl dropped after 24th patient

e Trial stopped after 34 patients

Summary of
AML trial results

CR by 50 days:
IA 10/18 = 56%
TA 3/11=27%
Tl 0/5= 0%
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Adaptive Randomization
Compared with
Balanced Randomization

Adaptive Randomization

Adaptive Randomization:
CRs in bold yellow
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Adaptive Randomization:
other 41 patients on IA

TA TI Estim:

TRERE TRRRE 36/75

t TERRR FRERT CRS
’ (48%)

Balanced Randomization

Estim:
21/75
CRs
(28%)

Cure Magazine (2006)

“l see no rationale to further delay
moving to these designs,” says
Dr. Giles, who is currently
involved in eight Bayesian-based
leukemia studies. “They are more
ethical, more patient-friendly,
more conserving of resources,
more statistically desirable.”
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However!!

External impact of the trial?

8GX Pharmaceuticals Discontinues Phase I/l Clinical Trial
Of Troxatyl In Third-Line Acute Myelogenous Leukemia
Main Category: Lymphoma / Leukemia / Myeloma 0
Also Included In: Clinical Trials / Drug Trials tweets
Article Date: 29 Aug 2006 - 0:00 PDT
@1 The DSMB found that the study response rates were
unlikely to provide evidence of a treatment benefit as
S : e = s
(id @ third-line treatment for patients with AML.
tgday that it has discontinued . L |
i Phase VNIl clinical trial of ~ CUrrent Article Ratings: I
Tpxatyl(TM) as _a third-line Patient / Public: Not yet rated ”
atment for patients Health Professional: 3 (1 votes) |
ktiffering from acute Article Opinions: 0 posts |
[rllyelogenous leukemia ”
IQAML)’ based upon the Find other articles on: "troxatyl” ”
ecommendation of the |
tudy's independent data and
[safety monitoring board (DSMB). The DSMB found that the study response rates ||
| were unlikely to provide evidence of a treatment benefit as a third-line treatment
for patients with AML. The recommendation to discontinue the clinical trial was not
made due to safety concems.
"The response rates observed to date in our Phase II/Ill trial of Troxatyl are not at
a level that we believe would support a New Drug Application as a third-line
J AMA The Joumal of the
American Medical Association
Multim

Home CurrentIssue AllIssues Online First ~ Specialties & Topics CME

June 13,2012, Vol 307, No. 22>
Adaptive Clinical Trials

A Partial Remedy for the Therapeutic Misconception?
William J. Meurer, MD, MS; Roger J. Lewis, MD, PhD; Donald A. Berry, PhD

JAMA. 2012;307(22):2377-2378. doi:10.1001/jama.2012.4174.

—
Article | References

There is a common “therapeu

primarily scientific aims and rarely attempt to collectively improve the outcomes of their pa
overarching goal of most clinical trials is to evaluate the effect of a treatment on disease outcomes.3
Comparisons are usually made with placebo for conditions having no established treatments and with
standard care for conditions having effective treatments. Any benefit to an individual trial participant is a
chanee effect of randomization and the true, but unknown, relative effects of the treatments. Available
evidence is conflicting regarding whether patients receive some benefit from simply participating in a
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Can advocates influence
the way we think about the

purpose of clinical trials?

Joffe/Weeks, JNCI (2002)

“Many respondents viewed the main
societal purpose of clinical trials as
benefiting the participants rather than as
creating generalizable knowledge to
advance future therapy. This view, which
was more prevalent among specialists
such as pediatric oncologists that
enrolled greater proportions of patients
in trials, conflicts with established
principles [from Belmont Report] of
research ethics.”

OUTLINE

> BATTLE trial in lung cancer




Clinical Trial Design in the Genomic Era 11/21/2013

BATTLE Trial in NSCLC

Kim et al. Cancer Discovery 2011

[
\

Equal Randomization Followed by Adaptive Randomization J

\
\J

Y A Y
Erlotinib Vandetanib | Erlotinib + Sorafenib
bexarotene
BATTLE schema.
ar-Integrated Approaches of Targeted Therapy for Lung Cancer
ider growth factor receptor; RXI oid X receptors;
r endothelial growth factor, VEGFR, vasculs ndothelial growth factor

BATTLE results N (Dlsease Control Rate)

KRAS/ | VEGF/

BRAF | VEGF | RXRICy
R cD1

1 8 58
(35%) (14%) (40%) | (0%) | (38%) | (34%)
- : ;
Vandetanib
(41%) (0%) (38%) v (--) (0%)

None

Is EGFR wt a blomarker 5|gnature for sorafenlb’?

i !l 14 39 4 18
Sorafenib
(79%) (64%) | (25%) | (61%) (58%
83 6 41
Total
(43%) (48%) (49%) | (33%) | (46%) (46%},
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IN THE SPOTLIGHT

The BATTLE Trial: A Bold Step toward Improving the
Efficiency of Biomarker-Based Drug Development
Eric H. Rubin, Keaven M Anderson ond Chistine K. G

The precise biomarker hypotheses, as well as the

[—

5
associated type | and type |1 statistical errors, are |
not clear. Thus, the study should be considered “
as generating a hypothesis rather than as \
il confirming a particular biomarker hypothesis. 1‘- -
e cancer paei o X e
Ll S S L seulfy ()
PRN g R |
N N !
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OUTLINE

> |-SPY 2, brief intro for Jane

I-SPY2

http://www.ispy2.org

Berry DA. Adaptive Clinical Trials.
Nature Reviews Clinical Oncology (2011)
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Driving Biomedical ‘
Innovations ol

Initiatives to Imprbve
Products for Patientls

11/21/2013

To respond to these challenges, FDA will

hold a series of scientific meetings with
academic investigators, patient groups, drug
developers, statistical and methodological
experts, and ethicists to achieve a common
understanding of steps that can be taken when
an investigational drug being studied for a
serious disease with no acceptable treatment
option shows exceptional promise. CDER will
then publish a draft guidance on an expedited
development pathway based on the outcome
of these meetings.

FDA is also working on two more immediate
and related steps toward expedited drug
development. First, the Agency is developing

therapies and will lay out many strategies for
selecting the patients most likely to benefit
from a particular drug. These enrichment
strategies are expected to improve the
efficiency of clinical trials and serve as a
source of expedited drug development.

Second, as a working example of an expedited
pathway, CDER will publish a draft guidance
on the use of pathologic complete response
pPCR)—when no clinical evidence of a
disease remains—as a surrogate endpoint

for accelerated approval in primary high-
risk breast cancer. This guidance will outline

a relatively seamless pathway that could be

followed from a multi-drug screening trial

a draft guidance on enrichment iesin
clinical drug development. This is a major
step forward for speeding progress for targeted

such as I-SPY 2 to an accelerated approval.
This would speed the availability of targeted

therapies for breast cancer.

nent for future women

help the researchers learn

10
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-SPY2 TRIAL

Outcome:
Complete

response
at surgery

11
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I-SPY2 TRIAL

Qutcome:
Complete

response
at surgery

Arm 2 graduates
to small focused
Phase 3 trial

11/21/2013

I-SPY2 TRIAL

Outcome:
Complete

response
at surgery

Arm 3 drops
for futility

I-SPY2 TRIAL

Outcome:
Complete

response
at surgery

Y
Arm 5 graduates
to small focused
Phase 3 trial

12
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I-SPY2 TRIAL

Qutcome:
Complete

response
at surgery

Arm6 is
added to
the mix

I-SPY-like TRIAL for Combinations

I-SPY-like TRIAL for Combinations

Y

E
ubstudy: Adaptively
randomized factorial

13
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I-SPY-like TRIAL for Combinations

85% success rate in
Phase lll, with focus on
patients who benefit

(0]

randomized factorial

11/21/2013

I-SPY2 Adaptive Process
> Primary endpoint: pCR (role of MRI?)

» Match drugs with up to 10 biomarker
signatures

» n between 60 and 120 for “graduates”

> Currently:
419 centers, US & Canada
¢~500 pts randomized
oFirst 7 exp drugs:
neratinib, ABT888, AMG386, AMG479,
MK2206, pertuzumab, pertuzumab+T-DM1

I-SPY2 Effects & Clones

» Match drugs with biomarker signatures

» Savings from common control

> Better therapies move thru faster

» Successful drug/biomarker pairs
graduate to small, focused, more
successful Phase 3 based on Bayesian
predictive probabilities

» Offspring of I-SPY 2: lymphoma, HIV,

| melanoma, Alzheimer’s,|acute heart

failure, scleroderma, SARI/H1N1, ...

14
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Guidance for Industry

Pathologic Complete Response in
Neoadjuvant Treatment of High-Risk
Early-Stage Breast Cancer: Use as an

Endpoint to Support Accelerated

Approval

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER)

May 2012
Clinical/Medical

OUTLINE

> Goldilocks and I-SPY 3

Designs for I-SPY 3 to
address both pCR and
EFS in a single trial

15
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Assumptions

»Focus on triple-negative neoadjuvant
breast cancer as an example

» Hypothetical phase Il results

= Control pCR rate 35%

= Experimental: pCR rates 35%, 40%, ..., 70%
> Benefit in EFS due to pCR increase

> Relationship between pCR and EFS from
CTNeoBC (Cortazar et al. SABCS 2012)

CTNeoBC

Association of pCR with EFS in Triple Negative Subtype

Triple Negative

e
z
£ = _
. HR =0.24
= o
-] o
2 o
z
& =
3 o
& HR=0.24, P* < 0.001
& e | (C:0.18t00.33)
5 - - pCR (n =389)
@ o | — nopCR(n=768)

e

' y i ; (Courtesy of
0. :30v A0 80 60 4G 120 Patricia Cortazar)

- 5 Months since Randomization
PCR=ypTlis ypND * Nominal p-value

(Bayesian) Distributions of Hazards (CTNeoBC),
Assuming Exponential Event Rate

If pCR

If not pCR

AL AL N AL L AL AL L
0 0.005 0.01 0.015
Hazard (per month)
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Smoothed Version of Cortazar

pCR

0 T T T T T T T T
0 10 20 30 40 50 60 70 80 90

Months

11/21/2013

EFS for pCR Rates 70% vs 35%

01 \"

R

pCR
g pCRrate

70%

— 07 \\ e

s T °

£ 0.6-| \\ *==.Lontrol. HR~ 0.62
E 5

~o_
o
No pCR o
P

v o o oo 35%

T
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Months

EFS for pCR Rates 55% vs 35%

1
[T S, NS PER: e
0.8~ S T . pCRrate
—07
3 T 55%
2o T=Control
3 - AR HR~0.75
@05 No pCR e
5_? b e 35%
£04
<
&
0.
0.2
0.1

T T T T T T T T

10 20 30 40 50 60 70 80 90

Months
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For All Designs Considered

* Accelerated approval if superiority on pCR
* pCR analysis when all patients have surgery

* Single final pCR comparison with control
e Full approval if superiority on EFS
« 3 years minimum follow-up for EFS

« Single final EFS comparison
* Type | error rate controlled < 2.5%

Power Via Simulations: Fixed Design

Same for Group-Sequential

pCR rate

One-Look (at pCR) Design

» Maximum sample size N (= 1200)

> When 300t patient has surgery, find
predictive probabilities that both pCR and EFS
stat sig based on pCR results (only!) from I-SPY
3 (assume CTNeoBC)
= If PP < 5% when get to N stop now for futility

= If PP > 90% with current n then stop accrual (final
n =300 + ~120 due to delayed surgery)

= Otherwise choose smallest sample size (multiple
of 100) having PP > 90% (or go to N if none)

18
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Goldilocks Design

¢ Maximum sample size N (= 1200)

* When 300" pt has surgery, find PP of both
PCR and EFS stat sig based on pCR data
(only!) from I-SPY 3 (assume CTNeoBC)

- If PP < 5% when N pts then stop for futility
- If PP > 90% with current n then stop accrual
(final n greater by ~120)

* Else continue to next 100 surgeries; repeat
above untiln=N

¢ In all cases, pCR analysis after 6 mos, EFS
analysis after 3 yrs

Goldilocks Vs Fixed Vs One IA
1
0.8
@ 0.6
3
a 0.4+
0.2
0 A T T T T T T
0.30Y0.40 0.50 0.60\ 0.70
Both pcR Ers PCR ratg Both pCR  EFS
Fixed 0.0036 0.025 0.025 Fixed 0.884 1.000 0.884
Gold  0.0028 0.013 0.024 Gold  0.883 0.999 0.883
Mean Sample Size
Fixed1200
1200+
QQ
1000 q},'\r
z goo{ 97 /o
: 5
3 600 >
= 00
400
2004
O T T T T T T T T
0.30 0.40 0.50 0.60 0.70
pCR rate
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Mean Duration

120
100+

EFS Fixed1200

Months
o
o
1

T T T T T
0.30 0.40 0.50 0.60 0.70
pCR rate

11/21/2013

MRD a surrogate marker
in leukemia?

Example: MRD/Relapse in ALL

All patients
107 -
09 P < 0-0001 MRD >= 0-1% after induction; n = 38
(2] , I"
07 J_,
Ir
0-6 J
0-5 J!J
04 rj_.‘
03 |
T e
b2 o~ MRD < 0:1% after induction; n=77 |
L] /
0.0
o 5 10 15 20 25 30 35 40
Months

Holowiecki BJH 2008
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OUTLINE

> Basket trials

Basket Trials

» Targeted drug, develop simultaneously
across organ-specific cancers

» Restrict to tumors expressing target

» Population sizes small means trial
sample sizes must be small

The Approaching Wall

»Ever finer grid of biomarker
categories: Within 10 years
every cancer patient will have
an orphan disease.

»How to develop drugs in this
setting?

21
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CLINICAL  4oricie Clinical Trials 2013
TRIALS

Bayesian hierarchical modeling of patient
subpopulations: Efficient designs of Phase Il
oncology clinical trials

Scott M Berry”, Kristine R Broglio®, Susan Grosher” and Donald A Berry™*

Bockground  In oncology, the treatment paradigm is shifting toward personalized
medicine, where the goal is to match patients to the treatments most likely to deli-
wvor benefit. Treatment effects in various subpopulations may provide some informa-
tion about treatment effects in other ubpopulations.

Purpose ‘We compare different approaches to Phase Il trial design where a new
troatment is being investigated in several groups of patients, We compane consider-
ing each group in an independent trial to a single trial with hierarchical modeling of
thie patient groups,

Methods We assume four patient groups with different background respanse rates
and simulate operating characteristics of thee trial desigrs, Simon's Optimal Two-
Stage design, a Bayesian adaptive design with frequent interim analyves, and a Baye-
sian adaptive design with frequent interim anabyses and hierarchical modeling across
patient groups.

Rewifs  Simon's design: are based on 10% Type | and Type |l ermor rates. The inde-

11/21/2013

Hierarchical modeling/
Bayes borrowing assumptions

Population of response rates within 10 tumor types:

N3 N;  Observations N,

Response rates p; have a distribution, one that is
imperfectly known, even after observing the R/N,;

65

Hierarchical modeling/
Bayes borrowing assumptions

Population of response rates within 10 tumor types:

Ns N;  Observations N,

R,/N; gives info about p, which gives info about
population of p’s which gives info about p,, say.
Hence “borrowing.”

22
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Hierarchical modeling
assumptions/prior

o Distribution of response rates p;, is
unknown—itself has a probability
distribution

e Expectations regarding p’s can differ
by tumor type

e Prior distribution (“hyperprior”) of
heterogeneity o in population of p’s is
important in determining borrowing

Learn about heterogeneity
parameter 0 from trial results

o large:

o small:

Many Possibilities ...

o moderate:

o moderate:

23
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Compare Bayes with S2S
(same type | and Il error rates)

e Intermediate design: Bayes with
no borrowing across tumor types

e Criteria:
¢ Total sample size

¢ Probability correct decision

11/21/2013

One case: 4 tumor types, all positive

Bayes Borrow Bayes No Borrow S2s

Mean Prob Prob |Mean Prob
Type p

Prob |Mean Prob Prob
N  Success Futility| N Success Futility| N Success Futility

1 40.25/%0.0 0.972 0.028 |24.5 0.808

0.192 (31.4 0.795 0.205

2§ 0.30|1§.4 0.988 0.012 |21.7 0.914 0.086 |[33.0 0.902 0.098

3§ 0.35/18.1 0.996 0.004 (18.4 0.964 0.036 |34.0 0.955 0.045

440.40| 3.5 0.998 0.002 |15.6 0.984 0.016 [34.6 0.980 0.020
T e e

Toti 66.0 80.2

133.0

Mean N

All Positive
® Borow M NoBorrow

w |
el
o |
-
w -
o
3

1 2

O Simon

4

e
=

0.8
I

Probability Success
0.6

0.4
I

0.2

0.0

Tumor Type

All Positive

= Borow M NoBorow O Simon

2 3 4

Tumor Type
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OUTLINE

> Decision analysis & rare disease

Designing a clinical trial
is making a decision

Standard Approach to
Choosing Sample Size

e Example: time to event. Want
m 25% reduction in hazard
m 5% type | error, two-sided
= 80% power
= 2/month accrual
= 8 mo median for control
= 12 mos follow-up

e Answer: n = 650

25
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Standard Approach

e Would be an accident if this design
is optimal (or even okay) when
goal is delivering good medicine

e Can’t be right for both

mDisease is CHF
mDisease is a rare pediatric cancer

e Can’t be right for both
m Product is bone marrow transplant
mProduct is a chocolate bar

Of course investigators
and regulators adjust

e For rare diseases, accept smaller trials

e For highly invasive or toxic products,
consider disease severity & require
stronger evidence of effectiveness

e Still: How small, how severe, how
strong?

e To know whether deliver good medicine,
evaluate impact on patient population

7

Decision-Analytic
Clinical Trial

e Deliver good medicine to patients
e Which patients?

11/21/2013
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Ethics: Individual vs Collective

¢ Fundamental conflict

e Learning with time is inevitable
in medicine: Better to delay
getting any disease!

e But all patients should count
equally a priori, sacrificing
neither learning nor effective
treatment of patients in the trial

Decision-analytic Clinical Trial

e Goal: Effective overall treatment of
patients, both

m Those in the trial and

= Those who come after the trial

o Maximize overall benefit in “patient
horizon” N: All patients with the
disease who may benefit from
therapies considered

o Goal: maximize expected number of successes in N

o Either one- or two-armed trial

e Suppose ns right for one trial & N = 1,000,000
o Then for other N’s use n =

Optimal sample size for one trial and first of two trials

v e D

Ratio of sample sizes within row is general
Ratio across rows applies for particular prior distribution

27
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Optimal allocations
in a two-armed trial:

Optimal allocations to Arms 1 and 2

Prior distributions

Of course, optimal sequential
assignments are even better:
Bandit strategies

28
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“Bandit Strategies” & Google

Berry’ s bandit stuff

Berry DA (1972). A Bernoulli two-armed bandit. The Annals of Mathematical Statistics 43:871-897.
Berry DA (1978). Modified two-armed bandit strategies for certain clinical trials. Journal of the American Statistical Association
73:339-345.

Berry DA, Fristedt B (1979). Bernoulli one-armed bandits—arbitrary discount sequences. The Annals of Statistics 7:1086-1105.
Berry DA, Fristedt B (1980). Two-armed bandits with a goal, I. One arm known. Advances in Applied Probability 12:775-798.
Berry DA, Fristedt B (1980). Two-armed bandits with a goal, IIl. Dependent arms. Advances in Applied Probability 12:958-971.
Berry DA, Viscusi WK (1981). Bernoulli two-armed bandits with geometric termination. Stochastic Processes and Their
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