
1

SAS Techniques for Incorporating Medical Code Updates into Longitudinal Health Care Data

Perry Watts, Independent Consultant
Alan C. Wilson, Ph.D., Robert Wood Johnson Medical School

Abstract
Processing longitudinal health care data presents a unique
set of challenges to the SAS programmer. Typically, very
large transaction data sets are involved with each record
containing multiple medical codes describing a patient’s
hospitalization. The code definitions are updated annually,
and those updates must also be tracked so that longitudi-
nal study results are accurately reported. Because update
patterns have not been fully identified, they have to be
inferred from both the structure of the codes and an asso-
ciated conversion table. Once identified, techniques then
have to be developed for handling the updates. Two such
techniques are described in the paper. Format concatena-
tion is used to retrieve time-dependent ICD-9 Diagnostic
(DX) code descriptions, and code mapping with the POINT
option in a data step returns comparable codes needed for
tallying cross-year frequencies. Sample data, source code
listings, and generated output show how the techniques
work and how they influence study results. Our ultimate
goal in completing this exercise is to extend insights
gained from working with multiple ICD-9 version updates
to mapping ICD-10 codes to their ICD-9 predecessors. If
successful, developers can continue to work fruitfully with
software that is ICD-9 code compatible.

Problem Definition
Diagnostic codes in the health care industry are constantly
changing. New diseases are classified and existing ones
are re-classified. This means that all types of edits are
possible: addition, modification and deletion. In addition,
both code definitions and their associated descriptions can
change over time. In 1998, for example, the description for
DX code 041.04 was changed from STREPTOCOCCUS
GROUP D to ENTEROCOCCUS GROUP D, and in 2000
the code, 372.8, was replaced by 372.89 for CONJUNC-
TIVA DISORDER NEC. In the first instance the code was
held constant and the description changed, and in the
second different codes were used for the same diagnosis.

A more general problem emerges when an attempt is
made to define a complete rule-set that explains both a
code's structure and how it is updated. In the ideal situa-
tion, the fourth and fifth digits in the coding scheme are
reserved for increased refinement in diagnosis (Scerbo et.
al., p. 11). Over time DX codes become longer, but prede-
cessors with the same prefixes can easily be identified.
Figure 1 shows how the set of diagnostic codes for salmo-
nella configured as a hierarchical tree adheres to these
guidelines. Obsolete parent nodes in the tree are grayed
out meaning the referenced codes 003 and 003.2 in Fig-
ure 1 should not be found in a current transaction data set
of patient hospitalizations. Progeny codes also adhere to
the guidelines, because they contain exactly one digit
more than their direct ancestors.

Unfortunately, however, the neat hierarchy in Figure 1 is
frequently eclipsed by an arrangement similar to the one
depicted in Figure 2 for pulmonary disease. Without a

CDC conversion table it would be impossible to determine
that 799.1 is directly related to 518.81, and that code
518.81 has generated siblings, 518.83 and 518.84, rather
than more refined subordinates. Furthermore, two distinct
trees are required for displaying all the related five-digit
codes that range from 518.81 to 518.89, and codes 799.1
plus 518.81 continue to co-exist with their progeny.

The presence of several hundred entries in the conversion
table that resemble the schematic in Figure 2 shows that
the lexicon for diagnostic code updates is complicated and
that its derivation must arise from questions that are asked
of the data. While books describing ICD-9 codes are
available, they are generally geared towards providing
detailed instructions for assigning correct codes to a pa-
tient hospitalization rather than in presenting a global pic-
ture about how diagnostic codes relate to each other and
how they evolve over time. Therefore we rely on SAS pro-
grams to provide the information about update patterns
described later in the paper. While the programs are not
reviewed in the paper, they are available upon request.

Figure 1. A hierarchical tree shows how salmonella diagnos-
tic codes are increasingly refined over time. Codes with a
gray background are obsolete.

003

003.0 003.1 003.2 003.9003.8

003.29003.24003.23003.21003.20

Figure 2. The nonhierarchical, concurrent arrangement
among codes for pulmonary disease is displayed in two trees.

518.8

518.82 518.89

799.1

518.81

518.83 518.84

2

Longitudinal Data

The presence of changing code definitions adds another
layer of complexity to the already difficult task of preparing
data for longitudinal data analysis. Ron Cody alludes to
this difficulty when he defines terms in the preface of his
book, Longitudinal Data and SAS: A Programmer's
Guide:

In a SAS data set, performing calculations within an obser-
vation is relatively simple; performing calculations or making
comparisons between observations is more difficult. In this
book I use the term longitudinal data techniques to refer to
operations involving two or more observations per subject
(xvii).

With health care data, not only are there multiple observa-
tions per subject, but what is being observed also changes
over time. This issue is addressed by example in Figures
3 and 4 below.

In Figure 3 average pollen counts calculated at weekly
intervals are displayed for a short-term study. It is safe to
assume that the procedures used for obtaining the counts
do not change over time. A more complicated situation is
portrayed in Figure 4 where counts are tallied for pulmo-
nary disease patients hospitalized at XYZ General from
1986 to 1988. Midway through the study, code 799.1 dia-
grammed in Figure 2 is mapped to 518.81. If the code
mapping is not accommodated, undercounts are inevita-
ble, but counts can also be inflated if a single patient is
counted twice with the same diagnosis. The normalized
code, N799.1, in the "corrected" plot redefines 518.81 as
799.1 and removes any duplicate counts that are a by-
product of the redefinition. Totals change dramatically.

The use of the word "subject" in Cody's definition of longi-
tudinal data may cause some confusion when hospital
episodes are evaluated over time. Clearly, episodes are
not repeated, nor are re-hospitalizations for a single pa-
tient even recorded. Instead the "subjects" in these data
are defined later by a data analyst and may include such
aggregate entities as geographical regions, particular hos-
pitals (as in Figure 5), or particular departments within a
hospital. In fact the DX codes themselves may play the
role of "subject" in an analysis.

Identifying Usable Code Update Patterns
Update Sources:

Information about DX code updates come from two data
sources: DX code listings from the Centers for Medicare
and Medicaid Services (CMS formerly HCFA) and the
CDC conversion table from the National Center for Health
Statistics (NCHS).
1) DX Code Listings with Descriptions:

Annual revisions of the 15,000+ DX codes are available as
downloads from
www.hcfa.gov/stats/pufiles.htm

A sample from the most recent download, 9V19DIAG.TXT,
is shown in Table 1. The codes are identical in format to
the ones displayed in Figure 1 except that the decimal
points have been removed.

Figure 3. Average Pollen Counts for a short-term study from
Longitudinal Data and SAS: A Programmer's Guide, p. 125.
Since the same methods are used to collect data at weekly
intervals, the downward trend is accurate.

 0

 1,000

 2,000

 3,000

 4,000

1 3 5 7 9
Week_Number

M_Pollen
Mean Pollen Levels by Week

Figure 4. The definition of pulmonary disease changes in
1987.

#

0

100

200

Year

1986 1987 1988

#

0

100

200

Year

1986 1987 1988

Number of Patients hospitalized at XYZ
General Hospital for Pulmonary Disease

799.1

799.1
(518.81)

799.1
(518.81)

N799.1

N799.1

N799.1

Uncorrected Corrected

Table 1. Diagnostic codes for SALMONELLA from HCFA
download 9V19DIAG.TXT.

Diagnostic

Code
Description

003 OTH SALMONELLA INFECTION*

0030 SALMONELLA ENTERITIS

0031 SALMONELLA SEPTICEMIA

0032 LOCAL SALMONELLA INFECT*

00320 LOCAL SALMONELLA INF NOS

00321 SALMONELLA MENINGITIS

00322 SALMONELLA PNEUMONIA

00323 SALMONELLA ARTHRITIS

00324 SALMONELLA OSTEOMYELITIS

00329 LOCAL SALMONELLA INF NEC

Obsolete codes with an asterisk appended to their labels
identify hierarchical update types discussed in the next sec-
tion.
The initial digit '9' in 9V19DIAG.TXT references ICD-9-CM or
International Classification of Diseases, Ninth Revision,
Clinical Modification, and V19 for Version 19 obliquely refer-
ences fiscal year 2002.

3

Unfortunately CMS does not retain previous code releases
on its HCFA website, but with some programming the
more verbose CDC version of the codes can be translated
into HCFA look-alikes. CDC DX code listings dating back
to 1986 can be downloaded from the NCHS website at

www.cdc.gov/nchs/icd9.htm

2) The Conversion Table:
The CDC conversion table essential for identifying DX
code update patterns provides the second and most im-
portant source of information about code updates. It can
be found together with the most recent DX code listing at
the NCHS website.

A sample listing of scattered entries from the conversion
table appears in the Example region of Table 3. According
to header comments in CNVTB02.RTF current new codes
and their previously assigned equivalents are listed to-
gether with the date of conversion. Fiscal year ranges in
the most recent download extend from October 1, 1986 to
October 1, 2001. An entry date of October 1, 2001 means
the code mapping cannot be altered until October 1, 2002.

An Exhaustive listing of Code Update Patterns

Nine distinct update patterns from the conversion table are
listed in Table 2. Specific examples are also presented to
explain what is going on.

Usable Update Code Patterns: a subset of the Exhaustive List
Update patterns amenable to code mapping are those that
that point back to a single ancestor baseline code. An in-
tervening PURE ADD with no baseline code is simply not
counted. All code maps in Figures 1 and 2 are single an-
cestry maps.

In Table 3, usable update patterns are highlighted and
reasons for rejecting the unusable patterns are also pre-
sented. While four out of nine update patterns are re-
jected, they only account for seven percent of the entries
in the conversion table.

Classification of the Usable Update Patterns:
Hierarchical and Lateral Mapping Types
The remaining usable conversion table entries can be
categorized as either hierarchical where predecessor
codes are obsolete or concurrent where predecessor and
successor codes exist side-by-side. The hierarchical type
of entry is fully described in the setup for Figure 1 at the
beginning of the paper, and it is also well documented in
the literature (see Scerbo et. al., p. 11). Concurrency, on

Table 3. Usable update patterns that translate into code
mappings for a transaction data set are highlighted. They
account for approximately 93% of the entries in the CDC
conversion table.

Update Pattern FREQ %

Cum

Freq

Cum

%

1)1 PREV,1 CURR 345 52.04 345 52.04

·Code Del(*) 2 0.30 347 52.34

3)Code Identity 5 0.75 352 53.09

¹Compound Maps 35 5.28 387 58.37

ºM PREV, 1 CURR 8 1.21 395 59.58

6)Matched M-M 10 1.51 405 61.09

7)1 PREV, M CURR 240 36.20 645 97.29

8)Pure ADD 15 2.26 660 99.55

¾Unmatched M-M 3 0.45 663 100.00

·,º,¾ There is no way to identify single ancestor codes with
these update patterns.
¹Compound maps are rejected, because multiple passes are
required to detect all required codes in a patient record.

Table 2. Identified DX code update patterns with examples.

Update Pattern Example

Curr

Code

Eff

Oct1

Prev

Code

¶1 PREV,1 CURR 007.5 2000 007.8

·Code Del (*) 305.1 1994 305.10,305.11,
305.12,305.13*

¸Code Identity 041.04# 1997 041.04

¹Compound Maps 690.11 1995 691.8&704.8

ºM PREV,1 CURR V45.79 2000 255.8,289.59,
388.8,569.49,
577.8,V45.89

»Matched M-M 645.10-
645.11,
645.13

2000 645.00-
645.01,
645.03

¼1 PREV,M CURR 783.40-
783.43

2000 783.4

½Pure ADD 995.7 2000 None

¾Unmatched M-M 654.90-
654.94

 654.2,654.9

¶1 PREV -> 1 CURR: One-to-one cardinality is present with
one previous code mapping to one current code. The update
may or may not be hierarchical. PREV codes may or may
not be obsolete.
·CODE DELETION(*). PREV codes with a terminating as-
terisk in the conversion table are physically removed from
the database. In this instance HCFA changed its ruling.
Code 305.1 (TOBACCO USE DISORDER) formerly obsolete
was reinstated as a current code in 1994. The subordinate
codes were then removed.
¸CODE IDENTITY(#) indicates that descriptions are altered
without codes being changed. Code 041.04 has already
been described in the Problem Definition section.

Table 2 (contd)

¹For a COMPOUND MAPPING to occur, all PREV codes
must be recorded in a single patient hospitalization.
ºMANY PREV->1 CURR. Multiple codes are mapped to a
single successor. This process is just the opposite of the
conventional trend towards increased refinement.
»MATCHED MANY->MANY. Only one (internal) digit in the
PREV codes is changed in this mapping. The code mapping
structure remains in tact.
¼1 PREV->MANY CURR captures hierarchical mapping for
increased refinement.
½PURE ADD. No mapping takes place, because there are no
PREV codes.
¾UNMATCHED MANY->MANY. Multiple codes map to other
multiple codes. Tracing individual mappings is not possible.

4

the other hand, is not described anywhere even though
206 out of the 465 usable CDC code conversions are con-
current. For this reason we focus exclusively on the less
tractable concurrent entries in this section. They typically
lead to lateral mappings among sibling codes without an
obvious change in diagnostic refinement. The connection
between the concurrent code 518.81 and its successors,
518.83 and 518.84, in Figure 2 is an example of lateral
mapping.

Lateral Mapping for Concurrent Codes
Diagnoses don't always go from general to more specific.
Even at the most general Diagnostic Category level the
more precisely defined:
Category Description
-------- ---------------------------------
001-139 INFECTIOUS AND PARASITIC DISEASES
140-299 NEOPLASMS

coexists with:
Category Description
-------- ---------------------------------
790-796 NONSPECIFIC ABNORMAL FINDINGS
797-799 ILL-DEFINED AND UNKNOWN CAUSES OF

MORBIDITY AND MORTALITY

Furthermore, the lack of specificity is repeated at lower
code levels with such descriptors as NEC for "Not Else-
where Classifiable", NOS for "Not Otherwise Specified",
OTH for "other", UNS for "unspecified", and NSPCF for
"nonspecific". NEC codes are included in the list, because
they are used "only when the coder lacks the information
necessary to code the term to a more specific category"
(ICD-9CM Preface (FY01), 4). Needless to say these
catchall codes wreak havoc on a hierarchical structure of
increasingly refined diagnoses, but their flexibility is
needed for generating a coding scheme that accommo-
dates all degrees of specificity.

The catchall codes are also used to accommodate asyn-
chronous updates where additional refinements in diagno-
ses are made at a later time. The following example is
drawn from the CDC conversion table:
Current Code Effective Date Previous Code
V42.89 1997 V42.8
V42.81-V42.83 1997 V42.8
V42.84 2000 V42.89

While the 1997 updates are hierarchical in structure, code
V42.89, five alphanumeric characters in length, is really a
synonym for the shorter V42.8. When V42.84 is added
later in 2000, it is generated from the coexistent, catchall
code V42.89 not obsolete V42.8. Descriptors from the
latest HCFA download explain what is going on:
V42.8 TRANSPLANT STATUS NEC*
V42.81 TRNSPL STATUS-BNE MARROW
V42.82 TRSPL STS-PERIP STM CELL
V42.83 TRNSPL STATUS-PANCREAS
V42.84 TRNSPL STATUS-INTESTINES
V42.89 TRNSPL STATUS ORGAN NEC

While 139 out of the 206 coexistent previous codes in the
conversion table contain character strings that put them
into the catchall category, 67 do not. These 67 codes are
difficult to track, because sometimes they mask label
changes. Again from the conversion table:

Current Code Eff Date Previous Code
 E967.2 1996 E967.0
BATTER BY MTH|STPM BATTER BY FATH|STPF

From the mapping it would appear that female batterers
evolved from their male counterparts. However, prior to
1996, E967.0 stood for
CHILD ABUSE BY PARENT

Since the term "parent" is less specific than "mother" or
"father" this code update represents a second way to in-
troduce increased specificity into the coding structure.
However, now there is no way to specify a parent without
having to identify that person as a "mother" or "father".

Finally, there are instances where increased refinement
has to be assumed from the context of the update rather
than by the presence of catchall phrases or masked la-
bels. For example, the conversion table entry:
Current Code Eff Date Previous Code
20401 1991 V1061

ACT LYM LEUK W RMSION HX OF LYMPHOID LEUKEMIA

shows that V1061 is subsumed by the
more highly refined DX code, 20401. A
Venn diagram captures the relationship
better than a hierarchical tree structure.

Because the structure of the lateral updates just described
is not based on a thorough examination of the relevant
codes, we cannot be sure that all possible update scenar-
ios have been described. Nevertheless, each of the sce-
narios identified so far is repeated multiple times in the
conversion table. A coding specialist could probably
broaden our understanding of the update process, but it
would also be helpful to have a report that correctly labels
previous codes in a conversion table. Such a report is
constructed from an application of format concatenation
the first technique described in the next section.

Techniques for Managing Code Updates
Format concatenation for time dependent code descrip-
tions and code mapping for uniform code assignments
across a pre-defined span in time are described in this
section. The concatenated formats are constructed from
the HCFA downloads whereas the CDC conversion table
is used for creating a code map. The applications, how-
ever, use both update sources for input. Format concate-
nation is used for labeling usable conversion table entries,
and raw codes in a patient hospitalization data set are
labeled and validated with an application of format con-
catenation prior to code mapping.

Technique #1: Format Concatenation

••Definition of Terms
There are no universally accepted terms for describing a
format that appears as an argument in a label of another
format. Therefore, in this paper format concatenation is
reserved for a format where another related user-defined
format is assigned specifically to the OTHER range. The
relationship among concatenated formats can always be
depicted as a set of linked nodes shown in Figure 5.
These formats are also known here as appended formats.

Appended formats are not the same as nested formats.
The following example of a nested format is taken from the
SAS Procedures Guide, Version 8:

20401

V1061

5

proc format;
 value benefit
 low-'31DEC79'd = [worddate20.]
 '01JAN80'D-high = '** Not Eligible **';
run; (467)

WORDDATE is nested or contained within BENEFIT, be-
cause it uses starting ranges from BENEFIT. Appended
formats, on the other hand, are separate entities contain-
ing both defined ranges and values. The more generic
term embedded is reserved for both nested and appended
formats.

The following example of format concatenation comes
from Shoemaker's paper cited in the Reference Section:
proc format;
 value $MYLOB
 'MD' = 'Medicaid' other = [$LOB12.];
 value $LOB
 'CO' = 'Commercial' 'MC' = 'Medicare'
 'SF' = 'Self-Funded' other = 'Unknown';
run; (105)

In the appended format, $MYLOB, 'MD' is the range, and
'Medicaid' is the value associated with the range. Shoe-
maker also states that overlapping range errors will not be
generated when the same range is re-defined in a subse-
quent format. This feature makes it possible to reassign
different labels to the same DX code over time. Note too
that a baseline format is always part of format concatena-
tion. It can be identified by the absence of an appended
format assignment to the OTHER range. Finally, it should
be noted that embedded formats are delimited by square
brackets rather than quotation marks. Format lengths must
also be specified within the brackets.

In Figure 5 year-stamped DX codes from the CDC conver-
sion table are formatted by a link to the correct descriptive
mapping (DM) format having a matching year value in its
name. The linkage is handled by a dynamic format that
works with the PUTC function at run-time to return the
correct starting format for initiating a search. If a match is
not found in the first linked format, the appended formats
are traversed in order by moving backwards in time. Even-
tually, in the absence of an update, the baseline format,
BL1995F, is applied, and if there is still no match, a miss-
ing value is returned. Figure 5 shows how the appended
formats are traversed.

••Constructing Appended Formats

To create the series of appended for-
mats, it is necessary to complete the
tasks listed in the adjacent flowchart.
This flowchart differs from an earlier
version found in a related paper (Watts,
681). Currently, the starting point is the
set of downloaded HCFA text files
whereas the earlier version contained a
double conversion from an initial set of
SAS formats to control-out data sets
and then back to a corresponding set of
concatenated formats. Also an entire
branch of instructions from the earlier
flowchart can be eliminated, because
the maximum length required for ap-
pended format definitions is obtained
when the downloaded text files are
processed. Before, label lengths were
obtained in a separate process from
the FORMATS catalog. What remains,
therefore, is a simpler design with a
single, linear path.

¶,· Input data sets are created from versions 13 to 19
HCFA downloads for years 1995 to 2001. The record lay-
out is shown in Table 1 with a 5-character DX code fol-
lowed by a 25-character descriptive label.

¸ Annual updates are obtained from two-by-two compari-
sons of the input data sets. The structure of the compari-
sons is depicted in Figure 6. Note here that the second
data set in the initial two-by-two comparison becomes the
first one in the next comparison. PROC SQL is used to
process the data.

The SQL code below culls updates from the first two input
data sets and stores the results in data set, F14:
create table F14 as
 select Early.DxCode as EStart,
 Early.DxDesc as ELabel,
 Late.DxCode as LStart,
 Late.DxDesc as LLabel
 from DX13 Early full join DX14 Late
 on Early.DxCode EQ Late.DxCode
 where Early.DxDesc NE Late.DxDesc
;

Figure 6. Obtaining yearly updates from HCFA downloads.

...DX13

Code Desc

DX14

Code Desc

DX15

Code Desc

DX19

Code Desc

Data Set F14
Obs ESTART ELABEL
1 V428 TRANSPLANT STATUS NEC
2
Obs LSTART LLABEL
1 V428 TRANSPLANT STATUS NEC*
2 V4289 TRNSPL STATUS ORGAN NEC

Figure 5. A schematic for format concatenation
Conversion Table

Prev Date Curr
V4289 2000 V4284

1999 Updates

...

All Formats

other=' '

BL1995F

DM1999F
other=[$DM1999F40.]

other=[$DM1998F40.]

(None)

(DM1996F - DM1998F)

2000 Updates

DM2000F

2001 Updates

other=[$DM2000F40.]

DM2001F

WhichFmt=put(year,$DynFmt.);
Desc=putc(DxCode,WhichFmt);

 PROC FORMAT
Create Concatenated Formats

Download
 Text Files

SAS Data

F
Data Sets

U
Data Sets

DATA STEP
Create SAS Data Sets

PROC SQL
Arrange Updates

PROC SQL
Get Updates

DM2001F

other=[$DM2000F40.]

U_Start U_Label

¶

·

 ̧

Í

Î

6

A full outer join in the SQL command retrieves both de-
leted and new codes whereas the selection criteria listed
in the ON and WHERE clauses returns updated labels. A
left join alone would return deleted codes whereas a right
join would capture new codes. Repeating the SQL com-
mand from inside a macro generates all tables: F14 to
F19. The numeric extension on the name references the
latter of the two tables being compared - mirroring how the
update process actually works. For example, F19 for 2001
captures the changes between the 2000 and 2001 code
downloads. Note too that there is no table F13. The base-
line format, BL1995F, with every code from the 1995
download is used instead. The baseline format, in other
words, plays the role of base case in a recursive process.

¹ At this point the four variables in the F* data sets need
to be compressed into variables START and LABEL used
in the concatenated formats. A value for YEAR also has to
be added, since the data sets will be appended to each
other before they are changed into formats. The UNION
set operator is used to differentiate processing for the
three types of update:
create table U14 as /*U for update*/

/*additions*/
 select LStart as Start, LLabel as Label,
 "1996" as year
 from F14
 where LStart NE ' ' AND EStart EQ ' '

union
/*deletions*/
 select EStart as Start, "deleted" as Label,
 "1996" as year
 from F14
 where ESTart NE ' ' AND LStart EQ ' '

union
/*modifications*/
 select LStart as Start, LLabel as Label,
 "1996" as year
 from F14
 where LStart EQ EStart AND LLabel NE ELabel
;

Deletions must be labeled with a constant such as deleted
so that the prior undeleted label for a code is not errone-
ously retrieved in a given transaction.

Again all the U* data sets are created in a macro with the
value for YEAR being supplied by a macro variable. At the
end of this step, U* data sets are appended to form
ALLUPDATES, and ALLUPDATES is sorted by descend-
ing YEAR and within YEAR by ascending START (or DX
code value).

º Two data sets are needed for the final assembly with
CNTLIN. The first, MKFMT, comes directly from the ap-
pended data set, ALLUPDATES, and it contains all the
updated codes with their time-delimited descriptions:
data MkFmt(keep=fmtname type start label);
 length label $&dxLen fmtname $8;
 retain type 'C';
 set AllUpdates;
 by descending year;

 fmtname = 'DM'||year||'F'; /*DM=Desc Map*/
run;

The second data set, MKHLO, uses a looping structure to
generate one record for each year:
data MkHLO(keep=fmtname type start label hlo);
 length label $&dxLen fmtname $8;
 retain type 'C' start ' ';
 do year = 2001 to 1995 by -1;
 fmtname = 'DM'||put(year,4.)||'F';
 HLO = "OF";
 if year gt 1996 then /*1996fmt pts to BL*/
 label = 'DM'||put(year-1,4.)||"F&DxLen..";
 else
 label = "BL1995F F&DxLen.."; /*Baseln Fm*/
 output;
 end;
 stop;
run;

The operations here have to be divided between two data
steps to accommodate years when no updates occur. In
fact, codes were not updated in 1999, because HCFA
anticipated Y2K problems. The format for that year, there-
fore, contains a single entry:
Start End Formatted Value
OTHER **OTHER** $DM1998F25.

In the MKHLO data set, HLO is assigned a two-character
value "OF". O means that the range is OTHER and F ref-
erences a FORMAT or INFORMAT. The argument for
LABEL is a string, and the square brackets have been
removed. Therefore, the format equivalent to the data step
assignment is
OTHER=[$BL1995F25.]

The macro variable DXLEN in the two data sets above
resolves to 25, the maximum length of the variable DESC
in all the HCFA downloads. Finally, the data sets are com-
bined to form DESCMAP, the control-in data set used as
input to PROC FORMAT.

DESCMAP contains multiple format definitions grouped by
values for FMTNAME. For additional comments about
creating multiple formats from a single control-in data set,
see Shoemaker, page 106.

••The Dynamic Format
The dynamic format $YRDYNF is created in a separate
process with the application of a macro:
%macro runTime;
 proc format library=library;
 value $YrDynF
 "1995" = "$BL1995F"
 %do year = &minDMYr %to &maxDMYr;
 "&year" = "$DM&Year.F"
 %end;
 other="Time ERROR"
 ;
 run;
%mend runTime;
%runTime;

The $YRDYNF format and the PUTC function are both
used to link the data-step value for YEAR with its associ-
ated starting format at run-time. Note that the label in a
dynamic format is a text-string not an embedded format.

Data Set: U14
Obs Start Label year
 1 V428 TRANSPLANT STATUS NEC* 1996
 2 V4289 TRNSPL STATUS ORGAN NEC 1996

From Data Set DESCMAP
fmtname type HLO Start label
DM1997F C V428 TRANSPLANT STATUS NEC*
 C V4289 TRNSPL STATUS ORGAN NEC
 OF DM1996F25.

7

Late binding resolution at run-time is made possible by the
PUTC (or PUTN) function and not by any special property
of the format itself. Appended formats on the other hand
are static. The links are fixed at compile-time.

••Application: Annotating the CDC conversion table
An annotated conversion table is necessary for under-
standing what is going on with the lateral mapping updates
described earlier in the paper. Such a table eliminates the
need for manually searching multiple HCFA text files to
track code changes. Proper tracking involves knowing
exactly how codes are defined over a period of time.

With hierarchical mapping, it is easy to figure out what a
PREV code originally stood for. For example, V42.8
changed from TRANSPLANT STATUS NEC to TRANS-
PLANT STATUS NEC* in 1997. Only an asterisk for obso-
lescence was added to the definition. However, as men-
tioned previously, E9670 not only generated E9672 for
BATTER BY MTH|STPM in 1996 but its definition changed
from CHILD ABUSE BY PARENT to BATTER BY
FATH|STPF as well.

Because of space constraints, no instructions are provided
in this narrative about how to re-configure the subset of
usable mappings in the code conversion table to the lay-
out used for input in the data step below. All CURR code-
mapping ranges in the input data set have been parsed so
that single records are produced for every CURR and
PREV code combination in the table.

 data demo(keep=currYrPrev code dsc when);
 length curr prev code $5;
 length prvDscNow prvDscBef currDsc dsc $25;
 length year yrLess1 when $4;
 length nowFmt beforeFmt $8;
 length currYrPrev $16;
 array _code{3} $5 curr prev prev; ¶
 array _dsc{3} $25 currDsc prvDscNow
 prvDscBef;
 array _when{3} $4 year year yrLess1;¶

 input curr year prev;
 nowFmt=put(year,$yrDynF.);·
 if(index(nowFmt,'ERROR')) eq 0 then ¸
 do;
 prvDscNow=putc(prev,nowFmt);·
 currDsc=putc(curr,nowFmt);·
 end;
 yrLess1=put(input(year,4.)-1, 4.);
 beforeFmt=put(yrLess1,$yrDynF.);¹
 if(index(beforeFmt,'ERROR')) eq 0 then ¸
 prvDscBef=putc(prev,beforeFmt); ¹
 currYrPrev=trim(curr)||'-'||year||'-'||prev;
 do i=1 to 3;
 code=_code[i]; dsc=_dsc[i]; when=_when[i];¶
 output;
 end;
 cards; º
 E9672 1996 E9670
 51883 1998 51881
 51884 1998 51881
 64510 2000 64500
 run;

¶ One entry for CURR and two for PREV are posted. The first for

PREV displays the first post-mapping description. The second
earlier label shows what PREV stood for prior to update. Arrays
are more manageable here than PROC TRANSPOSE, be-
cause they can accommodate repeated variable assignments
in their definitions.

· The dynamic format and PUTC function work together to iden-
tify the correct starting format in the series of concatenated
formats. Note, however, there is NO format traversal in this par-
ticular invocation of $YRDYNF. Updates in the starting ap-
pended format should correspond exactly to the mappings in
the CDC conversion table.

¸ Error checking is built into the dynamic format to make sure
that the data step value for YEAR is within range. Only code
conversions from 1996 to 2001 are processed in this applica-
tion. 1995 is defined as the baseline year so that former de-
scriptions for 1996 PREV mappings can be retrieved.

¹ Formats are now traversed until the first instance of a PREV
code prior to code mapping is found.

º A sample of entries from the modified conversion table is se-
lected for full annotation. Some are already depicted graphi-
cally in Figure 2.

Technique #2: Code Mapping

Two major activities are involved with code mapping, used
for generating uniform code assignments across a pre-
defined span in time. The first, code reassignment, occurs
when usable, threaded PREV values from the code con-
version table match codes in the baseline HCFA
download. Threading replaces any intermediate mappings
with the oldest ones. For example
Current Code Effective Date Previous Code
V42.89 1997 V42.8
V42.84 2000 V42.89
becomes:
V42.89 1997 V42.8
V42.84 2000 V42.8

This means that both V42.89 and V42.84 are mapped to
V42.8. Most of the time, however, threads contain only
one final mapping from the conversion table.

Map-types also need to be added to the descriptive label
of a converted code. This part of the process uses all the
entries in the conversion table, not just the usable ones.
Transaction files contain a full gamut of codes. Therefore,
it is possible that all mapping indicators displayed in Fig-
ure 8 will appear in the output.

Figure 7. Selected entries from the annotated conversion
table. Annotation is made possible by an application of format
concatenation described in this section.
Curr- Year- Prev Code Description When
------------------------- -------- --- --------
51883-1998-51881 51883 CHRONIC RESPIRATORY FAIL 1998
 51881 ACUTE RESPIRATRY FAILURE 1998
 51881 RESPIRATORY FAILURE 1997
51884-1998-51881 51884 ACUTE & CHRONC RESP FAIL 1998
 51881 ACUTE RESPIRATRY FAILURE 1998
 51881 RESPIRATORY FAILURE 1997
64510-2000-64500 64510 POST TERM PREG-UNSP 2000
 64500 deleted 2000
 64500 PROLONGED PREG-UNSPEC 1999
E9672-1996-E9670 E9672 BATTER BY MTH/STM 1996
 E9670 BATTER BY FATH/STEPFTH 1996
 E9670 CHILD ABUSE BY PARENT 1995

8

Remember, code mapping is only feasible when a single
ancestor code can be identified without ambiguity.

CURR codes with a many-to-one relationship to PREV codes
can be mapped:
Current Code Eff Date Previous Code
783.40-783.43 2000 783.4
CURR codes with a one-to-many relationship to PREV codes
cannot be mapped:
Current Code Eff Date Previous Code
V45.79 2000 255.8,289.59,388.8,
 569.49,577.8,V45.89

Fortunately a format can be used to return a single
(PREV) label or code for many (CURR) start values.

••Constructing the CMAPF format for Code Reassignment
Like the format concatenation annotation example, usable
entries from the code conversion table are modified so
that a separate record is generated for each code within a
CURR range. The modified data set SMAP then comes
into THREADS below with a descending sort on YEAR.
With the direction of the sort, later records are processed
first. This way the data step "looks ahead" with multiple
SET statements suggested by Ron Cody in Longitudinal
Data and SAS: A Programmer's Guide (114-116). Looking
ahead, in this instance, however, involves going back-
wards in time!
data threads(keep=thread curr prev year);
 array rev{&nobs} $1 rev1-rev&nobs; Ê
 retain rev1-rev&nobs ' ';
 retain srchcode;
 do i=1 to totobs;
 set sMap point=i nobs=totobs;Ë
 if i=totobs then Ì
 do;
 if rev[i] eq ' ' then
 do;
 thread+1;
 output; Í
 end;
 stop;
 end;
 else
 do;
 if rev[i]=' ' then
 do;
 srchcode=prev;
 thread+1;
 output; Í
 iplus1=i+1;
 do j=iplus1 to totobs;
 set SMap point=j nobs=totobs; Ë
 if rev[j] eq ' ' and
 curr eq srchcode then
 do;
 rev[j]='*';
 output; Í
 srchcode=prev;
 end; /*IF REV[J]*/
 end; /*J*/
 end; /*IF REV[I]*/
 end; /*ELSE DO*/

 end; /*I*/
run;

Ê REV[] for reviewed stores information from subsequent SET
statements in the data step.

Ë Multiple SET statements are highlighted.
Ì The last record may or may not reference a new thread.
Í All intermediate mappings are generated in this data step.

Subsequent executions of PROC SQL replace intermediate
mappings with final ones.

After intermediate mappings have been replaced with final
ones, the THREADS data set is transformed into the
$CMAP format with CURR and PREV codes being re-
named as START and LABEL respectively. This way,
V4284 can be mapped to its earliest predecessor, V428 by
applying a format:

mapped_code = put(raw_code,$cmapf.);

••Constructing the CLMAPF format for map-typing DX codes
The CLMAPF format for map-typing is constructed by ap-
plying a set of SQL commands to baseline HCFA descrip-
tive labels for downloaded codes:
proc sql noprint;
 create table CLMap as Ê
 select coalesce(RejStrt,dxcode) as start,
 coalesce(RejLabel,dxdesc) as label
 from data.BL1996 full join data.parsedRejects
 on dxcode = RejStrt and year gt "1996";

 create table CLMapF as Ë
 select distinct CL.start,
 left(trim(put(coexist,$CoEFmt.)))||
 CL.label as label
 from CLmap CL left join data.dxCodeMap CM
 on CL.start EQ CM.label;
quit;

Ê Descriptions from the HCFA 1996 download are replaced with
unusable mappings(!) when indicated.

Ë Map indicators (*,**) from an application of $COEFMT on CO-
EXIST in DXCODEMAP are pre-pended onto HCFA download
descriptions.

Labels produced by an application of $CLMAPF are seen
in the application that follows, so output from the SQL
procedure is not shown here. To summarize just two
formats are needed for code mapping: $CMAPF maps
derivative codes to their earliest predecessors and
$CLMAPF identifies the mapping type through label modi-
fication.
••Application: Map-Typing and tallying cross-year frequencies
for Hospitalized Patients
Both format concatenation and code-mapping techniques
are used to generate the HOSP data set. Format concate-
nation detects errors and retrieves the original description,
ODESC, for a DX code. Code mapping produces uniform
codes with associated mapping labels. The output along
with additional annotation is shown in Figure 9, and the
variable COUNT is summarized in Figure 10.
data hosp(keep=eId year rawDxCode mapDxCode
 count oDesc mapDesc);
 length dx1-dx5 $5;
 length rawDxCode mapDxCode $5;
 length thisFmt $8;
 length year $4
 length oDesc $25;
 length mapDesc $60;
 array dx $5 dx1-dx5;
 infile cards missover;
 input year n dx1-dx5; /*n=#codes per pt*/
 eId=_n_; /*eId=Patient Episode ID*/
 thisFmt=put(year,$yrDynF.); Ê

Figure 8. Code Map-Type Indicators

Indicator Type Mapping Action

None No mapping No reassignment

* Hierarchical Reassignment

** Lateral Reassignment

! Unusable No reassignment

9

 if(index(thisFmt,'ERROR')) eq 0 then
 do i=1 to n;
 rawDxCode=dx[i];
 oDesc=putc(rawDxCode,thisFmt); Ê
 if substr(ODesc,length(ODesc)) eq '*' or
 ODesc eq ' ' then Ë
 count=0;
 else
 count=1;
 MapDxCode=put(RawDxCode,$CMAPF.); Ì
 MapDesc=put(MapDxCode,$CLMAPF.); Ì
 output;
 end;
 cards;
 1998 4 4824 48241 04104 3888
 2001 2 0078 0075
 2000 1 V4579
 2000 1 00321
run;

Ê Format concatenation is used for detecting obsolescence and
for assigning time-delimited descriptions to the variable ORIG-
DESC.

Ë If a code is obsolete(*) or non-existent in the given time period,
COUNT is not incremented.

Ì Codes are mapped, then labeled.

Ë
Ì

When code 0075 is mapped to 0078 in the HOSP data
set, a duplicate code is generated for the same hospitali-
zation. Output from PROC TABULATE in Figure 10 shows
that totals are affected by the removal of such duplicates.
Similar inconsistent results are also displayed graphically
in Figure 4.

Indications for Code Mapping
Code mapping for cross-year frequencies is not recom-
mended for very large data sets containing millions of re-
cords that summarize patient hospitalizations. An addi-
tional set of mapped codes would have to be created for
each patient record. One way to circumvent this problem
is to exclude any codes that change during the time on
study. If patients were followed from 1996 to 2002, for
example, frequencies for 473 out of the 15,361 codes in
the most recent HCFA download could not be calculated.

If, on the other hand, a study is very focused and fairly
small, all codes could easily be mapped, and a coding
specialist might be able to transform additional unusable
mappings into usable ones that reflect special characteris-
tics of the study population. Yet another alternative is to
bypass the transaction files all together and store multiple
mappings of health codes in software applications that
manipulate longitudinal data. Code ranges in staging soft-
ware, for example, should be able to accommodate patient
data entered over a period of years.

Future Directions: Issues with ICD-10-CM
According to a private communication from Joyce M. Fra-
zier, Medical Systems Specialist affiliated with the CDC,

Figure 9. Mapped HOSP Data Set with a few abbreviations
 Raw Map
O eId Year Code Code Count OrigDesc
1 1 1998 4824 4824 0 STAPH PNEUM*
2 1 1998 48241 4824 1 STAPH AUR PNEUM
3 1 1998 04104 04104 1 ENTERO GROUP D
4 1 1998 3888 3888 1 DISOR OF EAR NEC
5 2 2001 0078 0078 1 PROTOZ INTEST DIS
6 2 2001 0075 0078 1 CYCLOSPORIASIS
7 3 2000 V4579 V4579 1 ACQ ABS ORGAN NEC
8 4 2000 00321 00321 1 SALMONELLA MENING

O eId MapDesc
1 1 *STAPHYLOCOCCAL PNEUMONIA
2 1 *STAPHYLOCOCCAL PNEUMONIA
3 1 STREPTOCOCCUS GROUP D
4 1 !V45.79->255.8,289.59,388.8 etc (2000)
5 2 **PROTOZOAL INTEST DIS NEC
6 2 **PROTOZOAL INTEST DIS NEC
7 3 !V45.79->255.8,289.59,388.8 etc (2000)
8 4 SALMONELLA MENINGITIS

Annotations are referenced by OBS (O) number:
¶ The raw code is obsolete in 1998. Therefore, COUNT set
to 0. Hierarchical mapping is involved.
· The raw code is valid. Therefore, COUNT is set to 1. Hier-
archical mapping is involved.
¸ The raw code is valid. There is NO code mapping, but a
coding specialist should be consulted to see if there is actu-
ally a change in diagnosis.
¹ The raw code is valid, but it cannot be mapped (unusable
PREV code).
º,» The same patient episode yields a duplicate mapping.
¼ The raw code is valid, but it cannot be mapped (unusable
CURR code).
½ No code mapping. No change in descriptive label.

Figure 10. HOSP Data Frequencies

| | Freq |
|-----------------------+--------|
Code Type	Dx Code	
-----------+-----------		
1) Raw	4824	0
	-----------+--------	
	48241	1
	-----------+--------	
	04104	1
	-----------+--------	
	3888	1
	-----------+--------	
	0078	1
	-----------+--------	
	0075	1
	-----------+--------	
	V4579	1
	-----------+--------	
	00321	1
	-----------+--------	
	All	7
-----------+-----------+--------		
2) Mapped	Dx Code	

	4824*	1
	-----------+--------	
	04104	1
	-----------+--------	
	3888!	1
	-----------+--------	
	0078**	1
	-----------+--------	
	V4579!	1
	-----------+--------	
	00321	1
	-----------+--------	
	All	6

Cross-year frequencies for patient data yield different
totals depending on how codes are defined. The map-
ping type is affixed to the mapped code in this listing.

10

the ICD-10-CM/ICD-9-CM diagnoses crosswalk has not
yet been developed, but the ICD-10-CM diagnostic codes
are in the final review stage of development. Nevertheless,
an ICD-9<>ICD10 Translator has been developed for mor-
tality codes by the World Health Organization (WHO) that
incorporates six of the nine update patterns from the con-
version table summarized in Table 2. Table 4 below lists
the Translator relationships with the corresponding update
patterns from Table 2. Unfortunately, it appears that there
will be some difficulty finding ICD-9 predecessors for all
the newly defined ICD-10 codes.

If the trend towards increased refinement in diagnoses
continues into ICD-10, the workable update pattern Ð from
Table 4 should again be observed more frequently than
pattern Î in the final version of the DX cross-walk table.
There is some corroboration for this trend in the article
New International Classification of Diseases (ICD-10): The
History and Impact cited in the Reference section. Table 2
from the article shows comparability ratios for leading
causes of death calculated by coding the 1996 national
mortality file once in ICD-9 and then again in ICD-10. Ten
out of the 15 leading causes of death are assigned a ratio
greater than 1.0 indicating that the number of codes in
these categories has continued to increase.

Summary and Conclusions

The aim of this paper has been to identify ICD-9 code up-
date patterns so that results from longitudinal data analy-
ses can be accurately reported. Update patterns are cate-
gorized as usable where a recently modified code is un-
equivocally mapped to a single ancestor code, and as
unusable otherwise. Two techniques have also been de-
scribed for handling the usable updates. Format concate-
nation retrieves time-dependent ICD-9 DX code descrip-
tions, and code mapping produces uniform, comparable
code assignments across a pre-defined span of time. Ap-
plications are provided to round out the definitions of the
techniques. An annotated CDC conversion table is con-

structed with an application of format concatenation, and
frequencies are calculated with a very small hospital epi-
sode data set illustrating all-possible update scenarios.

What has impressed us the most about completing this
assignment is the complexity of the update process. Al-
most half of the usable updates defy conceptualization
and are better described as lateral instead of hierarchical.
The problem also does not look like it will disappear with
the adoption of the ICD-10 standard. If the comparability
ratio is understood correctly, all ICD-10 codes for longitu-
dinal data analysis recorded during the cross-over period
of time will need to be mapped to their ICD-9 predeces-
sors. When code assignments are adjusted and duplicate
codes are removed, the comparability ratio should return
to an expected value of 1.0.

References and Citations

Cody, R. Longitudinal Data and SAS: A programmer's
Guide. Cary, NC: SAS Institute, Inc., 2001.

Colorado Department of Public Health and Environment.
New International Classification of Diseases (ICD-10):
The History and Impact. http://www.cdphe.state.co.us/
hs/ March, 2001. No. 41.

Frazier, Joyce M. Email To: awilson@umdnj.edu. Subject:
ICD-10 to ICD-9 Crosswalk. 24 April 2002.

SAS Institute Inc., 1999. SAS Procedures Guide: Refer-
ence, Version 8. 2 vols. Cary, NC: SAS Institute, Inc.

Scerbo, M., C. Dickstein, and A. Wilson. Health Care Data
and the SAS System. Cary, NC: SAS Institute Inc.,
2001.

Shoemaker, J. Advanced Techniques to Build and Man-
age User-Defined SAS FORMAT Catalogs. Proceed-
ings of the 11th Annual NorthEast SAS Users Group
Conference. Pittsburgh, PA, pp. 102-107, 1998.

Watts, P. Using Format Concatenation in SAS Software to
Decode Data in Longitudinal Studies. Proceedings Of The
12th Annual Northeast Sas Users Group Conference.
Washington, D.C., pp. 680-686, 1999.

Wilson, A. C. and M. Scerbo. Dealing with Health Care
Data using the SAS system. Proceedings of the 11th
Annual NorthEast SAS Users Group Conference.
Pittsburgh, PA, pp. 118-123, 1998.

Contact Information
Perry Watts
wattsp@dca.net

Alan C. Wilson
awilson@UMDNJ.EDU

SAS and all other SAS Institute Inc. product or service names
are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries.  indicates USA registration. Other
brand product names are registered trademarks or trademarks of
their respective companies.

Table 4. ICD-10 Mortality code Translator relationships
matched to Update Patterns for ICD-9 Code Revisions

ICD-9

Update Pattern

Can

Map?

ICD-10

Relationship

¶1 PREV,1 CURR Y Both ICD-9 and ICD-10
are unique

·Code Del (*) N ICD-9 code is discon-
tinued in ICD-10

¸Code Identity

¹Compound Maps

ºM PREV,1 CURR N ICD-10 code unique,
but ICD-9 is not

»Matched M-M

¼1 PREV,M CURR Y ICD-9 code unique,
but ICD-10 is not

½Pure ADD Y ICD-10 code does not
exist in ICD-9

¾Unmatched M-M N Neither code unique

