
 1

Paper 136-28 
Working with RGB and HLS Color Coding Systems in SAS Software 

Perry Watts, Independent Consultant, Elkins Park, PA 
  

 
Abstract  
Full-color displays have become commonplace with the 
advent of the Web. Typically they are rendered from desk-
top computers equipped with 16-bit color palettes capable 
of generating 65K unique colors. Thus a chart or scale is 
needed for making informed color selections for graphics 
applications. In SAS, the programmer has access to both 
the RGB (red/green/blue) and HLS (hue/light/saturation) 
coding systems. However, different algorithms are re-
quired for building charts and scales in the two systems. 
 
Before the technical aspects of chart and scale construc-
tion are presented in the paper, color spaces are defined 
to show how the full gamut of codes is mapped in both 
coding systems. For RGB, codes map to a cube, and a 
double-ended cone accommodates the Tektronix HLS 
system. With the color spaces as a foundation, instructions 
are then provided for building color charts with ODS and 
scales from PROC GPLOT. Both the charts and scales 
were introduced in the SUGI 27 paper Using ODS and the 
Macro Facility to Construct Color Charts and Scales for 
SAS Software Applications.  
 
RGB: The Color System for Screen Output 
The RGB (red/green/blue) Color Space 
Originally defined for color TV, the RGB system is the only 
system that is Web compatible (Weinman, 86). This 
means RGB codes are used in GIF, JPG and HTML files. 
In Figure 1, the color space for this screen-based system 
is depicted as a cube. While there are eight vertices in the 
cube, all are defined by combining the primary colors: red, 
green, and blue. Cyan(0,1,1), for example, contains a mix-
ture of green and blue but no red, and red with (1,0,0) con-
tains neither green nor blue - only red. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The cube in Figure 1 is constructed from an application of 
the G3D procedure that uses an ANNOTATE data set for 

coloring edges and vertices. The vertices are "dots" and 
the edges are marker font "U's" expressed as small paral-
lelograms connected to form a "line" of color. Only one 
parameter is altered to traverse the cube. To go from 
red(1,0,0) to yellow(1,1,0), for example, green is added in 
incremental amounts along the base line. There is also a 
one-to-one correspondence between the X-Y-Z coordi-
nates(0-1) and the RGB code values(0-255). Since SAS 
uses hexadecimal notation, yellow plotted at (1,1,0) trans-
lates to (255,255,0) or CXFFFF00 for actual coloring. 
 
The faces of the cube can be represented in 2-D space 
with an application of the GPLOT procedure. In Figure 2, 
one color coordinate is held constant and the other two are 
varied systematically to color all six sides of the RGB 
cube. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Look at the top face in Figure 1. It corresponds to the sec-
ond face rotated 90° in row 3 of Figure 2. Note that the 
value for the blue or third component at all four vertices is 
set to 1. The title "Blue=1" in Figure 2 should now make 
sense. 

To plot the diagonals in the RGB cube, all three compo-
nents need to be systematically varied between two op-
posing vertices. The gray "line" connecting the black 
(0,0,0) and white (1,1,1) vertices in Figure 3 is created with 
an application of the LINES macro below:  
%macro Lines(SR,SG,SB,TR,TG,TB,n,ds); ❶  
 data &ds; 
 length function font value color $8 text $12; 
 retain function 'label' text 'U'  
        style 'marker'; 
 retain xsys ysys zsys '2';   
 %do i=0 %to %eval(&n-1);  
  %let r=%sysevalf(&sr+(&tr.- &sr.)*&i/&n.); ❷  

Figure 1. RGB color space depicted as a cube. Coordinate 
ranges 0-1 directly map to color ranges 0-255. 
   

010: 
Green

000: 
Black

100:  
Red

101: 
Magenta

110: 
Yellow

111: 
White

011: 
Cyan

001: 
Blue

010: 
Green

000: 
Black

100:  
Red

101: 
Magenta

110: 
Yellow

111: 
White

011: 
Cyan

001: 
Blue

Figure 2. All faces of the RGB cube are defined by setting 
the value of the third component to 0 or 1. 

Blue=0 Blue=1

Red=0 Red=1

Green=0 Green=1

Blue=0 Blue=1

Red=0 Red=1

Green=0 Green=1

Blue=0 Blue=1

Red=0 Red=1

Green=0 Green=1



 2

  %let r=%sysfunc(round(&r.)); 
  %let g=%sysevalf(&sg+(&tg-&sg.)*&i/&n.); 
  %let g=%sysfunc(round(&g.)); 
  %let b=%sysevalf(&sb+(&tb-&sb.)*&i/&n.); 
  %let b=%sysfunc(round(&b.)); 
   r=&r; g=&g; b=&b; 
   x=r/255; y=g/255; z=b/255; 
   color="%rgbhex(&r,&g,&b)"; output; ❸  
  %end; 
  stop; 
 run; 
%mend lines; 
%Lines(0,0,0,255,255,255,51,anno1); ❶  

❶  A macro is used to draw the four diagonal RGB color lines in 
Figure 3. Values of 0 or 255 are assigned to the Source and 
Target endpoint codes. 255/5 or 51 points are plotted per 
line. 

❷  Correct hues for intermediate points in the line are calculated 
with an application of component-wise linear interpolation. 
The interpolation formula without macro variables and func-
tions is: 

( ) ir sr tr sr n= + − ×
 

where r is the interpolated value for the red component, sr 
and tr represent the source and destination component val-
ues, i is the iteration number, and n represents the number 
of iterations in the loop.  

❸  RGBHEX is a user-defined macro function that converts the 
decimal values for the RGB code components to a hexa-
decimal string preceded by the characters 'CX'. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The complement colors depicted in Figure 3 are not re-
stricted to the main diagonals in RGB space. In fact all 
colors have complements defined as: 

Color' = (r',g',b') = ((255-r),(255-g),(255-b)) 
Figure 4 shows complement colors for the non-diagonal 
SUGI 28 colors. 
 
Being able to distinguish between complements is a func-
tion of their distance in RGB space. That is why their use 
for labeling is only partially successful in Figure 8 whereas 
the black and white labels are consistently more visible in 
Figure 13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RGB ColorScales 
A color scale with gradually changing hues can be gener-
ated by connecting two end points in the RGB color space 
with the same component-wise linear interpolation tech-
nique used on the main diagonals. The first four scales in 
Figure 5 are interpolated. The fifth scale for the browser-
safe "picker" colors discussed on page 3 is not. Instead, 
each of the 216 RGB codes in the picker scale is treated 
as a separate point and simply plotted in its presented 
order. The lack of linearity is readily apparent with the visi-
ble bands of color. What is especially remarkable though is 
a periodicity that defied visual inspection of any browser-
safe chart shown on the Web. A pattern repeats itself 
every 36 colors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RGB Color Charts 
1)Constructing a SAS color chart* 
The SAS program that processes the downloaded text file 
of the 280 predefined colors from V8 SAS OnlineDoc uses 

                                                           
*Prefabricated SAS color charts are also available. See the Anno-
tated Web Listings section in this paper. 

Figure 3. Complement colors result by joining opposing ver-
tices in RGB space. The labels are complements too! 
 

    

010

000

100

101

111

011

001

110

010

000

100

101

111

011

001

110

 

Figure 4. Color complements are not restricted to the ver-
tices of the RGB cube.  
 

   

Complements to the 
SUGI Colors

Complements to the 
SUGI Colors

 

Figure 5. RGB Color Scales 

          

Edge Scale: Red to Yellow

Face Diagonal Scale: Magenta to Yellow 

Edge Scale: Red to Yellow

Face Diagonal Scale: Magenta to Yellow 

 

         

Complement Scale: SUGI Blue to Blue'

Arbitrary Scale: SUGI Blue to Red 

Complement Scale: SUGI Blue to Blue'Complement Scale: SUGI Blue to Blue'

Arbitrary Scale: SUGI Blue to Red Arbitrary Scale: SUGI Blue to Red 

 

         

A Nonlinear Scale: The Picker ColorsA Nonlinear Scale: The Picker Colors

 



 3

the macro SELECTRGB with customized "traffic lighting" 
in ODS to add color blocks to the output from PROC Re-
port. The annotated output in HTML format is called a 
"color chart".  
 
SELECTRGB is listed in full below: 
%macro selectRGB; 
  select (_C1_); 
  %do i = 1 %to &NColors; 
     when (&i.) CALL DEFINE(_COL_,"STYLE", 
       "STYLE=[ BACKGROUND=&&RgbN&i.]"); ❶  
  %end; 
  otherwise; 
  end; 
%mend selectRGB; 

❶  Macro variable &&RGBN&i is created in a Data _NULL_ step 
that processes all 280 colors. It contains an RGB code for a 
particular color. 

Macro variables must be used for background color as-
signments, because the STYLE option in the ODS 
DEFINE statement calls for unquoted constant text, not a 
SAS variable. Here is how the color chart in Figure 6 is 
derived from PROC REPORT in ODS: 
ods listing close; 
ods html 
  body='c:\SUGI28\SASColorChrtUnique.html' 
  style=SUGI28Colors; ❶  
  proc report data=X nowindows headline 
       headskip split='*' ls=100 ps=40; 
    columns CNum cName RGB HLS; ❷  
    define  cNum   / display width=2  
                     format=missf. 'C'; ❸  
    define cName   / display width=10  
                     'SAS*Color Name'; 
    define RGB     / display width=8 'RGB'; 
    define HLS     / display width=8 'HLS'; 
    compute CNum; 
      %selectRGB; 
    endcomp; 
  run; 
ods html close; 
ods listing; 

❶  The SUGI28COLORS style assigns the dark turquoise blue 
from Figure 4 to the table foreground region. The back-
ground is a very light shade of gray.  

❷  The variable CNUM is column #1, the argument of the 
SELECT statement in the SELECTRGB macro. 

❸  CNUM is set to missing with the MISSF format so that only 
the background color is displayed.  

➍  The SELECTRGB macro is invoked from a compute block. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2) A Browser-Safe "picker" Color Chart 
The browser-safe palette is a collection of 216 "picker" 
colors that are consistently rendered across all browsers, 
operating systems, and computer platforms (Weinman, 
p124). Web authors cited in the reference section gener-
ally feel that the importance of the browser-safe palette 
has diminished as a result of improvements in computer 
technology. However, LeRoy Bessler, noted SAS/GRAPH 
specialist, urges caution suggesting that all color selec-
tions for Web design be restricted to the palette so that the 
designer will be absolutely sure of what the viewer sees. 
Oddly enough, though, only the color black is browser-safe 
in the ODS HTML default-style template. 
  
Regardless of the controversy, the browser-safe palette is 
important and merits its own color chart. Creating one, 
however, turns out to be a challenge, because the colors 
do not fall into neat groupings of gradually changing hues. 
While there is a pattern in the browser-safe scale in Figure 
5, the color modulation can hardly be called "gradual". 
Recall too, that a color scale is linear containing at most a 
few lines that go through the RGB color space. In contrast, 
the points in Figure 7 are uniformly distributed in the RGB 
cube, and there is a very large number of ways to connect 
them.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Generally speaking, the same steps used for the prede-
fined SAS colors are needed for creating a browser-safe 
color chart: 

1) Create a SAS data set with identifying information - color 
name, code, etc. 
2) Write the SELECTRGB macro so that it operates on the 
proper columns of data. 
3) Run PROC Report from inside ODS to generate a color 
chart enhanced with color annotations. 

Since browser-safe colors are not named, placing multiple 
colors on a single row of output results in a more compact 
color chart. The color samples can also be enlarged and 
labeled with 8-character RGB codes that are colored in 
contrasting hues for greater visibility. 
 
Source Code Summary: 
There is no need for downloading data. Instead the 
browser-safe colors can easily be calculated, since they 
consist of all six-digit combinations for the three code 
components (63 = 216). Below is the SAS source code that 
creates the control-in data set used for generating the 

Figure 6. A color chart of SAS defined unique colors.  

           

Figure 7. Distribution of browser-safe colors in the RGB 
color space. 



 4

PICKERF format and the SELECTRGB macro variables 
used in PROC Report: 
data cntlin(keep=fmtname type start label); 
 retain fmtname 'PickerF' type 'N'; 
 array hexnums {6}$ 
      ('00','33','66','99','CC','FF'); 
 array decnums{6} (0,51,102,153,204,255);❶  
 length HexPVal HexPCVal $8;❷  
 substr(HexPVal,1,2)='CX'; 
 substr(HexPCVal,1,2)='CX'; 
 do i=1 to dim(hexnums); 
  do j=1 to dim(hexnums); 
   do k=1 to dim(hexnums); 
    n+1; 
    substr(HexPVal,3,2)=hexnums[i]; 
    substr(HexPVal,5,2)=hexnums[j]; 
    substr(HexPVal,7,2)=hexnums[k]; 
    cr=255-decnums[i]; ❶  
    cg=255-decnums[j]; 
    cb=255-decnums[k]; 
    if cr EQ cg EQ cb then❸  
     do; 
      if cr gt 128 then  
       do; 
        cr=255; cg=255; cb=255; *white txt; 
       end; 
      else  
       do; 
        cr=0; cg=0; cb=0;       *black txt; 
       end;  
     end; 
    substr(HexPCVal,3,2)=put(cr,hex2.); 
    substr(HexPCVal,5,2)=put(cg,hex2.); 
    substr(HexPCVal,7,2)=put(cb,hex2.); 
    start=n; label=HexPVal; 
    call symput('CN'||left(put(n,3.)), 
       left(trim(HexPVal)||trim(HexPCVal)));❹  
    output; 
   end; 
  end; 
 end; 
 stop; 
run; 

❶  The points are distributed uniformly in RGB space, because 
all the values are multiples of 51. 

❷  P and PC stand for "Picker" and "Picker Complement". Com-
plements are used to label the RGB codes. Note that some 
of the labels in Figure 8 aren't too visible. 

❸  When complement components are equal in value the re-
sulting color is gray and possibly not visible. The comple-
ment, therefore, is recast in black or white depending upon 
the value of the original Picker color (also gray). None of the 
colors in Figure 8, however, are gray. 

❹  Macro variables CN1-CN216 contain values for the browser-
safe colors and their complements. 

A matrix data set, not shown, simply rearranges the linear 
input into a desired row, column configuration. For exam-
ple, the vector (1,2,3,4,5,6) becomes { (1,2,3), (4,5,6) } 
with two rows and three columns. The SELECTRGB 
macro increases in complexity to accommodate the matrix 
just created: 
%macro selectrgb; 
%do j=1 %to &maxcol; 
 compute CNum&j; ❶  
 select (CNum&j); 
 %do i = 1 %to 216; 
  when (&i.) do; 
   CALL DEFINE(_COL_,"STYLE", ❶  
    "STYLE=[ BACKGROUND= %substr(&&CN&i.,1,8) ❷  
             FOREGROUND= %substr(&&CN&i.,9) ❷  
             FONT_FACE='Arial' FONT_SIZE=2 

             FONT_WEIGHT=Bold]"); 
   end; 
 %end; 
  otherwise; 
 end;          
 endcomp; 
%end; 
%mend selectrgb; 

❶  While the SELECTRGB macro is still invoked from PROC 
REPORT, the COMPUTE statement is placed inside the 
macro so that the _COL_ clause in CALL DEFINE will work 
as intended. 

❷   %SUBSTR is used to parse the macro variable into fore-
ground and background colors. 

Fortunately the code for PROC Report is very simple by 
comparison, but it too must be enclosed in a macro. It is 
included without comment below: 
ods listing close; 
ods html body='c:\N02Col\HTM\ColPick.html'; 
 /*Get a Matrix Report*/ 
 %macro Mreport; 
  proc report data=matrix nowindows  
       headline headskip ls=80 ps=75; 
  columns cnum1-cnum&maxcol; 
  %do i=1 %to &maxcol; 
    define cnum&i / display  
           width=8 format=PickerF. " "; 
  %end; 
  %selectRGB; 
  run; 
 %mend Mreport; 
 %Mreport;  
ods html close; 
ods listing; 

 
Usage: 
A color chart configured like the one for the browser-safe 
colors is a useful tool for graphics design. Besides being 
able to visually inspect actual colors prior to selection, it is 
also possible to copy and paste a desired RGB code from 
an HTML file directly into a SAS program. In Figure 8, the 
selection process is rendered pictorially: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Selecting colors for display from a Browser-Safe 
Color Chart. 

       

           
data adjusted; 
   set ssummary end=last; 
   select (srchtype); 
     when ('B')  color="CX333366"; 
     when ('BE') color="CX333399"; 
     when ('SE') color="CX33CC66"; 
     when ('S')  color="CX666633"; 
   end; 
run; 

            



 5

 HLS: The System for Color Scales 
An alternative color-coding system supported by SAS 
software is the Tektronix HLS system for hue, lightness, 
and saturation. These terms are not as intuitive as red, 
green, and blue, so definitions from Web Source #1 are 
provided below: 

Hue: 
the attribute of color by means of which a color is perceived 
to be red, yellow, green, blue, purple, etc. Pure white, black, 
and grays possess no hue (Range 0 to 360°) 
Lightness: 
(1) the attribute of color perception by which a non-self-
luminous body is judged to reflect more or less light. (2) the 
attribute by which a perceived color is judged to be equiva-
lent to one of a series of grays ranging from black to white 
(Range 0 to 255). 
Saturation: 
the attribute of color perception that expresses the degree of 
departure from the gray of the same lightness. All grays 
have zero saturation. Commonly used as a synonym for 
chroma especially in graphic arts (Range 0 to 255). 

Lightness and saturation may still be somewhat confusing. 
An alternative definition for lightness is the amount of white 
contained within a color whereas the amount of gray de-
fines a color's saturation. Fully saturated colors contain no 
gray. All grays including black and white are not saturated. 
 
The HLS Color Space 
The HLS color space is depicted as a double-ended cone 
shown in Figure 9. Figures 10 to 12 show how this color 
space lends itself so easily to color scale construction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Color scales are easy to construct in the HLS coding sys-
tem. Unlike the RGB scales where all components are 
manipulated simultaneously with component-wise interpo-
lation, two components can be held constant while the 

Figure 9. The Tektronix HLS Color System maps as a 
double-ended cone. The diagram on the right is from SAS 
Online Doc. 

-1 0 1

Li
gh

tn
es

s

100%

     0%

Hue Saturation

 

Hue Scale: perimeterHue Scale: perimeter

 

 

Lightness Scale: edgesLightness Scale: edges

 

Saturation Scale: diagonalSaturation Scale: diagonal

 

Figure 10. Light and Saturation Space mappings. 

 

Hue Fixed. Vary saturation 
at different light levels.

-1 0 1

1

2

3

Hue Fixed. Vary Light 
at different saturations

-1 0 1

1 2 3

Hue Fixed. Vary saturation 
at different light levels.

-1 0 1

1

2

3

Hue Fixed. Vary saturation 
at different light levels.

-1 0 1

1

2

3

Hue Fixed. Vary Light 
at different saturations

-1 0 1

1 2 3

Hue Fixed. Vary Light 
at different saturations

-1 0 1

1 2 3

Figure 11. Hue and Saturation Space mappings. 
   

Light Fixed. Vary hue at 
different saturations

-1 0 1

21

Light Fixed. Vary saturation 
at different hues.

-1 0 1

3

1

2

Light Fixed. Vary hue at 
different saturations

-1 0 1

21

Light Fixed. Vary hue at 
different saturations

-1 0 1

21

Light Fixed. Vary saturation 
at different hues.

-1 0 1

3

1

2

Light Fixed. Vary saturation 
at different hues.

-1 0 1

3

1

2

Figure 12. Hue and Light Space mappings. 

Saturation Fixed. Vary hue 
at different light levels

Saturation Fixed. Vary 
light at different hues.

-1 0 1-1 0 1

1

2

3

1
2

Saturation Fixed. Vary hue 
at different light levels

Saturation Fixed. Vary 
light at different hues.

-1 0 1-1 0 1

1

2

3

1
2



 6

value of the third is altered incrementally in a looping struc-
ture. Below is SAS code from an ANNOTATE data set for 
the hue scale pictured in Figures 9 and 11: 
%let S=255; %let L=128;❶  
%do H=0 %to 355 %by 5; 
  ylo=10; yhi=20; xlft=&H; xrt=xlft+5; 
  %bar(xlft,ylo,xrt,yhigh, 
      %hlshex(&H,&L,&S),0,solid); ❷  
  output; 
%end; 

❶  Values for saturation and light are held constant. The bright-
est possible hue scale is being constructed. 

❷ The ANNOTATE %BAR macro simplifies coding but only 
takes constant values as parameters. The conversion macro 
HLSHEX is listed in Appendix A. It converts decimal loop 
values to hexadecimals SAS understands. 

 
A Color Chart from a Lightness Scale 
A color chart derived from a lightness scale can be very 
useful in those situations where related, but clearly distin-
guishable colors are needed for a graphic. In Figure 13 a 
blue lightness color scale is displayed along with its corre-
sponding color chart. A bar chart comparing format resolu-
tion times with selections from the color chart is also 
shown.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The same algorithm used for generating the browser-safe 
color chart in HTML is used for the digitized color chart in 
Figure 13. This means that the discrete values in the light 
scale have to be translated into RGB. The translation 
macro, HLSTORGB listed in Appendix A performs the job. 
This macro is adapted from psuedo-code in Foley and Van 
Dam's book, Fundamentals of Interactive Computer 
Graphics. With RGB values supplied by HLSTORGB the 
input data set DIGITIZE can be processed by the 
SELECTRGB macro to assign colors to cells in an HTML 
file. 
%let xh=346; %let xs=208; 
%macro convert; 
 data digitize(keep=cnum rgbhex); 

  length rgbhex $8; 
  %do i=20 %to 255 %by 5;  
   cnum+1; 
   rgbhex="%RGBHex(%HLStoRGB(&xh,&i,&xs))"; ❶  
   output; 
  %end; 
 run; 
%mend convert; 
%convert; 

❶  This is an example of a nested user-defined macro function 
call. The inner macro, HLSTORGB, converts a decimal HLS 
triple to an RGB triple, and then RGBHEX returns a hexa-
decimal value for the RGB decimal. For a complete discus-
sion of user-defined macro functions see Art Carpenter's 
SUGI 27 paper cited in the reference section. 

 
Saturation Scale Legends support a Pie Chart 
Lynda Weinman, web author cited in the reference section, 
voices objections to the set of hues selected for the 
browser-safe palette: 

The browser-safe palette was developed by programmers 
with no design sense, I assure you. That's because a de-
signer would have never picked these colors. Mostly, the 
palette contains far less light and dark colors than I wish it 
did, and is heavy on highly saturated colors and low on 
muted, tinted or toned colors. 

A macro function RGBTOSAT that returns an HLS Satura-
tion value for an RGB code is used to test Weinman's as-
sertion about the saturation levels for browser-safe colors. 
This macro can be found with the other Foley and Van 
Dam conversion macros in Appendix A. It is used here to 
calculate saturation levels for all the browser-safe colors. 
The output summarized graphically in Figures 14 and 15 
corroborates Weinman's assertion.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The gradual increase in saturation may not be so visible in 
the first color scale in Figure 14. Figure 15 below provides 
an alternative where both saturation and hue are changed 
simultaneously. Hue starts at 15 (blue) and an arc is 
traced clockwise to 120 (red). 255 unique hue values are 
contained within the arc - one for each value of saturation. 

Figure 13. 48 evenly spaced values from 20 to 255 are 
used for constructing the digitized lightness scale. 

     

A Digitized Light ScaleA Digitized Light Scale

 

 

Figure 14. Distribution of saturation levels for browser safe 
colors is shown with two saturation scales that define the 
context for the pie chart. 

0 51 85 128 153     255

0 Browser-Safe Colors 215

0 51 85 128 153     255

0 Browser-Safe Colors 215

0   51  85   128 153         255

0 Saturation Range 255

0   51  85   128 153         255

0 Saturation Range 255

 

0: 3%
51: 3%
85: 6%
128:11%
255:69%

Sat Level:%Colors

0: 3%
51: 3%
85: 6%
128:11%
255:69%

Sat Level:%Colors



 7

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hue Scale Displays for Ordinal Data 
To round out the picture about HLS color scales, ozone 
bars are shown stacked to summarize levels of the pollut-
ant in the Philadelphia region during the summer months 
from 1997 to 2001. Again a fully defined hue scale serves 
as a legend to provide a context for the ozone levels. Note 
that the scale is actually reversed. The value for green 
(240) is greater than red (120).   
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Saturation is not the only parameter that can be modified 
to produce softer, muted colors. The color scale in Figure 
17 is identical to the one shown in Figure 16 except that 
lightness has increased from 128 to 192. The result is a 
more muted display. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
While not analyzed graphically, lightness scores for the 
browser-safe colors have the following distribution: 

                           Cum      Cum 
lite    Freq      Pct      Freq     Pct 
----------------------------------------- 
   0       1      0.46       1     0.46 
  26       6      2.78       7     3.24 
  51      13      6.02      20     9.26 
  77      24     11.11      44    20.37 
 102      37     17.13      81    37.50 
 128      54     25.00     135    62.50 
 153      37     17.13     172    79.63 
 179      24     11.11     196    90.74 
 204      13      6.02     209    96.76 
 230       6      2.78     215    99.54 
 255       1      0.46     216    100.0 

Only 20 out of the 216 colors are lighter than the ones 
shown in Figure 17, and 25 percent of the browser-safe 
colors have a lightness value of 128: the brightest setting 
in the HLS system. 
 
Summary and Conclusions 
RGB and HLS color-coding systems are reviewed in 
depth. Color spaces are depicted graphically, and an effort 
is made to show how distinctive color charts and scales 
are developed in both systems. Insight about the browser-
safe palette is gained by examining its rendition in the 
RGB and HLS color spaces, and graphics displays show 
how colors can be softened and tinted by changing their 
saturation and lightness levels.  
 
Annotated Web Citations 
1) http://www.hypersolutions.org/pages/colorDef.html 
Provides hue, lightness, and saturation definitions used in 
the paper. Additional terms such as color, tint and dither-
ing are also defined. 

2)  http://home.att.net/~B-P.TRUSCIO/COLOR.htm 
copyright by R.Truscio. Excellent graphics for additive col-
oring (RGB) and subtractive coloring (CMY). 

3) http://www.colormatters.com/colortheory.html 
Color wheel displays, primary, secondary, and tertiary col-
ors are featured. 

 

Figure 16. Summer Ozone Levels for a five- year period 
in the Philadelphia region. 

Good
Unhealthful-

Moderate Unhealthful+Good
Unhealthful-

Moderate Unhealthful+

 

 

Figure 15. Hue is changed along with saturation to substan-
tiate the claim that the browser-safe colors are highly satu-
rated. 

0   51  85   128 153         255

0 Saturation Range 255
0 51 85 128 153     255

0 Browser-Safe Colors 215

0   51  85   128 153         255

0 Saturation Range 255

0   51  85   128 153         255

0 Saturation Range 255
0 51 85 128 153     255

0 Browser-Safe Colors 215

0 51 85 128 153     2550 51 85 128 153     255

0 Browser-Safe Colors 215  

0: 3%
51: 3%
85: 6%

128:11%
255:69%

Sat Level:%Colors

0: 3%
51: 3%
85: 6%

128:11%
255:69%

Sat Level:%Colors  

Figure 17. Same ozone levels depicted with lighter colors. 

Good
Unhealthful-

Moderate Unhealthful+Good
Unhealthful-

Moderate Unhealthful+Good
Unhealthful-

Moderate Unhealthful+

 

  



 8

4) http://hort.ifas.ufl.edu/TEACH/floral/color.htm 
Additional color wheel displays are shown. 

5)http://www.webreview.com/1999/08_06/designers/08_06
_99_3.shtml 

Discusses how color works: RGB triplet, browser-safe col-
ors etc. 

6)http://wp.netscape.com/computing/webbuilding/studio/fe
ature19981111-5.html 

Good discussion of RGB and HLS color spaces. Good 
depiction of Hue and Saturation scales. Describes a tool 
for selecting a picker color. 

7) http://www.lynda.com/hex.html 
Lynda Weinman’s discusses the web-safe color dilemma 
reversing the position she took in the book cited in the 
reference section. She says now the palette’s importance 
has been outstripped by gains in hardware technology. 

8) http://www.webtemplates.com/colors/index.html 
A web-safe color picker is featured. When a particular 
color is selected, you are taken to a separate page to view 
its HEX code.  

9)http://www.webreview.com/1999/08_06/designers/08_06
_99_3.shtml  

Discusses the hexadecimal numbering system along with 
the RGB coding system. 

10) http://www.websitetips.com/color/ 
Excellent general “gateway” site containing links to color 
charts, articles and tutorials about color, articles and tools 
about color blindness, color psychology, color and design, 
browser-safe colors organized by hue and value, and the 
browser-safe controversy.  

11) Websites featuring ready-made SAS color charts:  
http://www.nesug.org link to publications and then to the 
title of this paper in the source code listing section. 
http://www.devenezia.com/docs/SAS/sas-colors.html 

References 
Bessler, LeRoy. Inform and Influence with Image and 

Data: Communication-effective Web Design for ODS, 
SAS, and SAS/GRAPH. Proceedings of the Twenty-
Seventh SAS User Group International Conference, 
Cary, NC: SAS Institute Inc., 2002. 

Carpenter, Arthur. Macro Functions: How to Make Them - 
How to Use Them. Proceedings of the Twenty-Seventh 
SAS User Group International Conference, Cary, NC: 
SAS Institute Inc., 2002. 

Foley, J.D. and A. Van Dam. Fundamentals of Interactive 
Computer Graphics. Reading, MA: Addison-Wesley 
Publishing Company, 1983. 

Haworth, Lauren E., Output Delivery System: The Basics. 
Cary, NC: SAS Institute Inc., 2001. 

SAS Institute Inc. SAS Online Doc. Cary, NC: SAS Insti-
tute Inc., 1999. 

SAS Institute Inc. SAS/GRAPH Software: Reference, 
Version 8, Volume 1. Cary, NC: SAS Institute Inc., 1999. 

Watts, Perry. Using ODS and the Macro Facility to Con-
struct Color Charts and Scales for SAS Software Ap-
plications. Proceedings of the Twenty-Seventh SAS 
User Group International Conference, Cary, NC: SAS 
Institute Inc., 2002. 

Weinman, Lynda. Designing Web Graphics.3: How to Pre-
pare Images and Media for the Web, Third Edition. Indi-
anapolis, Indiana. New Riders Publishing, 1999. 

 
Acknowledgements 
The author would like to thank Samuel Litwin for his expla-
nations of the RGB and HLS conversion algorithms in 
Foley and Van Dam's book. She is also grateful to Dr. Lit-
win for reviewing the manuscript. 
 
Contact Information 
Perry Watts, Independent Consultant 
wattsp@dca.net 
 
SAS and all other SAS Institute Inc. product or service names 
are registered trademarks or trademarks of SAS Institute Inc. in 
the USA and other countries.  indicates USA registration. Other 
brand product names are registered trademarks or trademarks of 
their respective companies. 
 



 9

Appendix A: Conversion Macros 
The programs below for the conversion macros are named so that they can be stored in an AUTOCALL 
LIBRARY. They can be downloaded from the NESUG-15 CD along with two additional programs that create a 
color chart and a color scale. Complete HTML listings of the color charts are also available on the CD. 
 
/*  ----------------------------------------------------------------------- 
    Program  :  HLSHex.sas 
    Purpose  :  Convert SAS Decimal HLS color to HEX which SAS understands 
    Input    :  Three decimal numbers representing a color in terms of 
                its hue, lightness, and saturation. 
    Output   :  a SAS HLS color Code Hhhhllss where hhh,ll,ss are 
                three hexadecimal numbers. 
    ------------------------------------------------------------------- */ 
    %macro HLSHex(hhh,ll,ss); 
      %sysfunc(compress(H%sysfunc(putn(&hhh,hex3.)) 
                          %sysfunc(putn(&ll,hex2.)) 
                          %sysfunc(putn(&ss,hex2.)))) 
    %mend HLSHex; 

 
/*  ----------------------------------------------------------------------- 
    Program  :  HLStoRGB.sas 
    Purpose  :  Convert an HLS decimal code to its RGB counterpart. 
    Algorithm:  Foley, J.D. and A. Van Dam.  
                "Fundamentals of Interactive Computer Graphics". 
                Reading, MA: Addison-Wesley Publishing Company, 1983, 
                page 619. 
    Input    :  Three decimal numbers for hue, light, and saturation 
    Output   :  A character string representing three decimal RGB digits 
                separated by commas: rrr,ggg,bbb 
    ------------------------------------------------------------------- */ 
    %macro HLStoRGB(h,l,s); 
        %let hue=%sysevalf(&h - 120); 
        %let light =%sysevalf(&l/255); 
        %let sat=%sysevalf(&s/255); 
        %if &light le 0.5 %then %let m2=%sysevalf(&light*(1+&sat.)); 
        %else %let m2=%sysevalf(&light+&sat.-&light*&sat); 
        %let m1 = %sysevalf(2 * &light. - &m2.); 
        %if &sat eq 0 %then %do; 
          %let r=&l; %let g=&l; %let b=&l; 
        %end; 
        %else %do; 
          %let rhue=%eval(&hue+120); 
          %if &rhue gt 360 %then %let rhue= %eval(&rhue.-360); 
          %if &rhue lt 0 %then %let rhue= %eval(&rhue.+360); 
          %if &rhue lt 60 %then %let r = %sysevalf((&m1+(&m2-&m1)*&rhue./60)*255); 
          %else %if &rhue lt 180 %then %let r=%sysevalf(255*&m2.); 
          %else %if &rhue lt 240 %then %let r=%sysevalf((&m1+(&m2-&m1)*(240-&rhue)/60)*255); 
          %else %let r=%sysevalf(255*&m1); 
   
          %let ghue=&hue;  
          %if &ghue gt 360 %then %let ghue= %eval(&ghue.-360); 
          %if &ghue lt 0 %then %let ghue= %eval(&ghue.+360); 
          %if &ghue lt 60 %then %let g = %sysevalf((&m1+(&m2-&m1)*&ghue./60)*255); 
          %else %if &ghue lt 180 %then %let g=%sysevalf(255*&m2.); 
          %else %if &ghue lt 240 %then %let g=%sysevalf((&m1+(&m2-&m1)*(240-&ghue)/60)*255); 
          %else %let g=%sysevalf(255*&m1); 
 
          %let bhue=%eval(&hue-120);  
          %if &bhue gt 360 %then %let bhue= %eval(&bhue.-360); 
          %if &bhue lt 0 %then %let bhue= %eval(&bhue.+360); 
          %if &bhue lt 60 %then %let b = %sysevalf((&m1+(&m2-&m1)*&bhue./60)*255); 
          %else %if &bhue lt 180 %then %let b=%sysevalf(255*&m2.); 
          %else %if &bhue lt 240 %then %let b=%sysevalf((&m1+(&m2-&m1)*(240-&bhue)/60)*255); 
          %else %let b=%sysevalf(255*&m1); 
        %end; 
        %let rr=%sysfunc(putn(&r,3.)); 
        %let gg=%sysfunc(putn(&g,3.)); 
        %let bb=%sysfunc(putn(&b,3.)); 
        &rr.,&gg.,&bb. 
 

     %mend HLStoRGB; 

 

 

 



 10

/*  ----------------------------------------------------------------------- 
    Program  :  RGBHex.sas 
    Purpose  :  Convert Decimal RGB color to HEX which SAS understands 
    Input    :  Three decimal RGB codes. 
    Output   :  a SAS RGB color Code CXrrggbb where rrggbb are 
                three hexadecimal numbers. 
    -------------------------------------------------------------------- */ 
    %macro RGBHex(rr,gg,bb); 
     %sysfunc(compress(CX%sysfunc(putn(&rr,hex2.)) 
                         %sysfunc(putn(&gg,hex2.)) 
                         %sysfunc(putn(&bb,hex2.)))) 
    %mend RGBHex; 
 
  /*  ----------------------------------------------------------------------- 
    Program  :  RGBtoHue.sas 
    Purpose  :  Calculate hue in HLS from an RGB code.  
    Algorithm:  Foley, J.D. and A. Van Dam.  
                "Fundamentals of Interactive Computer Graphics". 
                Reading, MA: Addison-Wesley Publishing Company, 1983, p618. 
    Input    :  Three decimals for red, green and blue. 
    Output   :  One decimal number for hue 
    -------------------------------------------------------------------- */ 
   %macro RGBtoHue(r,g,b); 
       %let red = %sysevalf(&r/255); 
       %let green =%sysevalf(&g/255); 
       %let blue=%sysevalf(&b/255); 
       %let mmax=%sysfunc(max(&red,&green,&blue)); 
       %let mmin=%sysfunc(min(&red,&green,&blue)); 
       %if &mmax eq &mmin %then %let hue=0; 
       %else %do; 
         %let rc=%sysevalf((&mmax-&red)/(&mmax-&mmin)); 
         %let gc=%sysevalf((&mmax-&green)/(&mmax-&mmin)); 
         %let bc=%sysevalf((&mmax-&blue)/(&mmax-&mmin)); 
         %if &red eq &mmax %then %let hue=%sysevalf(&bc-&gc); 
         %else %if &green eq &mmax %then %let hue=%sysevalf(2+&rc-&bc); 
         %else %if &blue eq &mmax %then %let hue=%sysevalf(4+&gc-&rc); 
         %let hue=%sysevalf(&hue*60); 
         /*if hue lt 0*/ 
         %if %index(&hue,'-') gt 0 %then %let hue=%sysevalf(&hue+360); 
         %let hue=%sysfunc(round(&hue+120)); 
         %if &hue ge 360 %then %let hue=%eval(&hue-360); 
       %end; 
       %sysfunc(putn(&hue,3.)) 

    %mend RGBtoHue; 
/*  --------------------------------------------------------------------------- 
    Program  :  RGBtoLum.sas (see header comments for RGBtoHue.sas - gets a light val) 
    ------------------------------------------------------------------------ */ 
   %macro RGBtoLUM(r,g,b); 
       %let red = %sysevalf(&r/255); 
       %let green =%sysevalf(&g/255); 
       %let blue=%sysevalf(&b/255); 
       %let mmax=%sysfunc(max(&red,&green,&blue)); 
       %let mmin=%sysfunc(min(&red,&green,&blue)); 
       %let ll=%sysevalf((&mmax+&mmin)/2); 
       %let lite=%sysfunc(round(%sysevalf(&ll*255))); 
       %sysfunc(putn(&lite,3.)) 

    %mend RGBtoLUM; 
/*  -------------------------------------------------------------------------------------- 
    Program  :  RGBtoSat.sas (see header comments for RGBtoHue.sas - gets a saturation val) 
    ------------------------------------------------------------------------------------ */ 
    %macro RGBtoSat(r,g,b); 
        %let red = %sysevalf(&r/255); 
        %let green =%sysevalf(&g/255); 
        %let blue=%sysevalf(&b/255); 
        %let mmax=%sysfunc(max(&red,&green,&blue)); 
        %let mmin=%sysfunc(min(&red,&green,&blue)); 
        %let ll=%sysevalf((&mmax+&mmin)/2); 
        %if &mmax eq &mmin %then %let sat=0; 
        %else %do; 
          %if %sysfunc(putn(&ll,3.1)) le 0.5 %then  
            %let sat=%sysfunc(round((%sysevalf((&mmax-&mmin))/%sysevalf((&mmax+&mmin)))*255)); 
          %else 
            %let sat=%sysfunc(round((%sysevalf((&mmax-&mmin))/%sysevalf((2-&mmax-&mmin)))*255)); 
        %end; 
        %sysfunc(putn(&sat,3.)) 

     %mend RGBtoSat; 


