
1

Paper 426-2011

Macros and Conventional Macro Variables:
Effective Tools for Customizing Tabular Output in SAS® ODS

Perry Watts, Stakana Analytics, Elkins Park, PA

ABSTRACT
While it is understood that macro variables are referenced in ODS by using MVAR and NMVAR statements, macro
programs continue to play a vital role in ODS. To back up this claim, the TABLETEMPLATE macro that generates a
customized table in ODS is reviewed in depth. Looping in the macro eliminates the need for hard coding, and multiple
ampersand macro variables (&&f&i) provide the only viable means for inserting data dependent text strings into a
table. Pre and Post macro versions of the code are presented to emphasize the role played by macros in ODS.

PROBLEM DEFINITION
To generalize PROC TEMPLATE table definitions, it is recommended that DYNAMIC variables reference structural
components such as headers or footers and that MVAR and NMVAR be reserved for constants that can change each
time a compiled template is called in a data step. However, what if the macro variables you need to define come from
the set of unique values in a column from the input data? Furthermore, what if you need a different outcome in a
PROC TEMPLATE CELLSTYLE-AS statement for each unique value in the column? In this situation, a reliable table
definition requires the assistance of a full-fledged macro with looping capabilities. What the paper describes is an
application where an ODS table definition is nested inside the macro TABLETEMPLATE. The table definition uses
MVAR and DYNAMIC variables in addition to conventional macro variables with multiple ampersands for managing
the CELLSTYLE-AS statement.

TRACING FONTS IN THE ODS STYLES.DEFAULT TEMPLATE FOR VERSION 9.2 SAS
Fonts comprise a sizable fraction of the attributes associated with CONTAINER-derived style elements in the ODS
Styles.Default template. Identifying an actual font that is assigned to a particular style element can present a chal-
lenge because of an indirect mapping sequence embedded in the template. How a few fonts are mapped is illustrated
in Figure 1 below.

Figure 1. A partial listing of a numbered version of the ODS Styles.Default template is presented in linear order. Fonts are refe-
renced by name rather than by value throughout the template. This means you have to go back to the beginning of the template
to find out that the default value for DOCFONT in the CONTAINER style element is <sans-serif>, Helvetica, sans-serif, relative
size 3. BATCHFIXEDFONT maps to SAS Monospace, <monospace>, Courier, monospace" relative size 2. (Gray-overlay fonts
below are not used by any of the CONTAINER style elements).

Obs Style Definition
--- ---
 1 class fonts
 2 "Fonts used in the default style" /
 3 'TitleFont2' = ("<sans-serif>, Helvetica, sans-serif",4,bold italic)
 4 'TitleFont' = ("<sans-serif>, Helvetica, sans-serif",5,bold italic)
 5 'StrongFont' = ("<sans-serif>, Helvetica, sans-serif",4,bold)
 6 'EmphasisFont' = ("<sans-serif>, Helvetica, sans-serif",3,italic)
 7 'FixedEmphasisFont' = ("<monospace>, Courier, monospace",2,italic)
 8 'FixedStrongFont' = ("<monospace>, Courier, monospace",2,bold)
 9 'FixedHeadingFont' = ("<monospace>, Courier, monospace",2)
 10 'BatchFixedFont' = ("SAS Monospace, <monospace>, Courier, monospace",2)
 11 'FixedFont' = ("<monospace>, Courier",2)
 12 'headingEmphasisFont' = ("<sans-serif>, Helvetica, sans-serif",4,bold italic)
 13 'headingFont' = ("<sans-serif>, Helvetica, sans-serif",4,bold)
 14 'docFont' = ("<sans-serif>, Helvetica, sans-serif",3);
...
175 class Container /
176 font = Fonts('DocFont')
177 color = colors('docfg')
178 backgroundcolor = colors('docbg');
...
349 class Batch /
350 font = fonts('BatchFixedFont')
351 color = colors('batchfg')
352 backgroundcolor = colors('batchbg');

2

Needed here is a table that links a font directly to the style element that uses it. In Figure 2, a few records from the
input data set, FONTTRACER, are formatted for output by an application of the TABLETEMPLATE macro. What
gives the final output its pizzazz is that the font listed in the FONT column is applied to the very same text displayed
in that column.

The enhanced table in Figure 2 employs the same method used for displaying hexadecimal color codes in a color
chart. The text for the color code is superimposed over a sample of the actual color. To look at color charts, check out
the author’s screencast.com account. The HTML font tracer is also available for download, and it is reproduced as a
screen snapshot in the Appendix.

THE PRE-MACRO VERSION OF THE SOURCE CODE FOR THE FONT TRACER
Yellow highlighted code in the listing below is changed in the TABLETEMPLATE macro. The repetitive code that is
highlighted indicates the need for a macro program. Gray highlights reference MVAR and DYNAMIC variables. To
see how COLHD is actually used, look at the DATA _NULL_ step in the full version of the source code available by
download. The DYNAMIC statement is also covered on pages, 342,348, and 391 in the ODS User’s Guide [2].

/* CREATE MACRO VARIABLES */
proc sql noprint;
 create table uniqueFonts as
 select distinct font from fontTracer;
 select count(*) into :n
 from uniqueFonts;
 select font into :f1 - :f%left(&n)
 from uniqueFonts;
quit;
%let n = %left(%trim(&n));

/* CREATE A TABLE TEMPLATE */
proc template;
 define Table TABLES.fontTbl;
 dynamic colhd;
 mvar f1 f2 f3 f4 f5 f6 f7 f8 f9;
 classlevels=on;
 define column columnFont;
 blank_dups=on;
 define header colhd;
 style=header;
 just=Center;
 end;
 header=colhd;
 CELLSTYLE
 val EQ F1 as {font = ("<monospace>, Courier",3)},
 val EQ F2 as {font = ("<monospace>, Courier, monospace",2,bold)},

Figure 2. The input data set, FONTTRACER, is derived from the styles.default template. FONTTRACER is transformed into a
font tracer table with an application of the TABLETEMPLATE macro. By looking at a display of the actual fonts in the table, a
more informed decision can be made when attributes need to be changed in a style element.

Input Data Set: fontTracer

Obs font Font Name Style Element

 1 "SAS Monospace, <monospace>, Courier, monospace",2 batchfixedfont Batch
 2 "<sans-serif>, Helvetica, sans-serif",3 docfont Container
...
42 "<sans-serif>, Helvetica, sans-serif",5,bold italic titlefont SystemTitle
43 "<sans-serif>, Helvetica, sans-serif",5,bold italic titlefont SystemFooter
44 "<sans-serif>, Helvetica, sans-serif",4,bold italic titlefont2 TitlesAndFooters

Font Font Name Style Element

"SAS Monospace, <monospace>, Courier, monospace",2 batchfixedfont Batch

"<sans-serif>, Helvetica, sans-serif",3 docfont Container

"<sans-serif>, Helvetica, sans-serif",5,bold italic titlefont SystemTitle

SystemFooter

"<sans-serif>, Helvetica, sans-serif",4,bold italic titlefont2 TitlesAndFooters

3

 val EQ f3 as {font = ("<monospace>, Courier, monospace",2,italic)},
 val EQ f4 as {font = ("<sans-serif>, Helvetica, sans-serif",3)},
 val EQ f5 as {font = ("<sans-serif>, Helvetica, sans-serif",3,italic)},
 val EQ f6 as {font = ("<sans-serif>, Helvetica, sans-serif",4,bold)},
 val EQ f7 as {font = ("<sans-serif>, Helvetica, sans-serif",4,bold italic)},
 val EQ f8 as {font = ("<sans-serif>, Helvetica, sans-serif",5,bold italic)},
 val EQ F9 as {font = ("SAS Monospace, <monospace>, Courier, monospace",2)},
 1 AS data;
 end; /* DEFINE COLUMN */
 define column restOfData;
 generic=on;
 blank_dups=on;
 define header colhd;
 style=header;
 just=Center;
 end;
 header=colhd;
 end; /* DEFINE COLUMN */
 end; /* DEFINE TABLE */
run;

The CELLSTYLE-AS statement is very similar to the SELECT statement used in base SAS. Each time a record is
processed, _VAL_ is compared to the contents of F1-F9. When a match is found, ODS applies the corresponding font
to the output and moves on to the next record. If there is no match, the default font associated with the DATA style
element is applied to the output. (1 AS data in the code plays the same role as OTHERWISE in a SELECT state-
ment).

As a preliminary step, it is necessary to print out the data set UNIQUEFONTS in order to hard-code the values for the
MVAR variables. Hard-coding is required for conformance to style-attribute specification in the syntax:

CELLSTYLE expression AS {style-attribute-name = style-attribute-value} [2, p. 389].
The style-attribute-value cannot reference a variable, not even an MVAR variable. It only works with text strings, and
in this program, the text string on the right side of the equation is equivalent to the MVAR variable in the expression.
Thus:

 val EQ F1 as {font = ("<monospace>, Courier",3)}
translates to:

val EQ "<monospace>, Courier",3 as {font = ("<monospace>, Courier",3)}
This is how the font attribute is formatted by the referenced font in Figure 2.

CELLSTYLE-AS is typically used to check data set values against ranges, not point values. Output Delivery System:
The Basics and Beyond, shows by example how to assign traffic lighting by specifying ranges with user-defined end-
points in a CELLSTYLE-AS statement [1, p. 282].

USING THE TABLETEMPLATE MACRO TO GENERATE THE FONT TRACER
Below is the revised code that replaces hard-coding with the TABLETEMPLATE macro. Not only is the code shorter
in length, it is also more reliable. There is no need, for example, to obtain intermediate printouts for the number and
values of the MVAR variables. Also, there really is no need for the catchall 1 as data in the CELLSTYLE-AS
statement. The data set FONTTRACER supplies values to the macro variables from the same column that is being
processed in PROC TEMPLATE.

/* CREATE MACRO VARIABLES */
proc sql noprint;
 create table uniqueFonts as
 select distinct font from fontTracer;
 select count(*) into :n
 from uniqueFonts;
 select font into :f1 - :f%left(&n)
 from uniqueFonts;
quit;
%let n = %left(%trim(&n));

/* CREATE A TABLE TEMPLATE */
%macro tableTemplate;
 proc template;
 define Table TABLES.fontTbl;
 dynamic colhd;
 mvar %do i = 1 %to &n; f&i %end; ;
 classlevels=on;
 define column columnFont;
 blank_dups=on;
 define header colhd;
 style=header;

4

 just=Center;
 end;
 header=colhd;
 cellstyle
 %do i= 1 %to &n;
 val EQ F&i as {font = (&&F&i)},
 %end;
 1 as data;
 end; /* DEFINE COLUMN */
 define column restOfData;
 generic=on;
 blank_dups=on;
 define header colhd;
 style=header;
 just=Center;
 end;
 header=colhd;
 end; /* DEFINE COLUMN */
 end; /* DEFINE TABLE */
 run;
%mend tableTemplate;
%tableTemplate

SUMMARY AND CONCLUSIONS
The TABLETEMPLATE macro described in this paper shows that macro programs can play a vital role in the con-
struction of ODS table templates. With this macro, repetitive coding is eliminated and program reliability is increased.
The macro also makes it possible to extend the capability of the CELLSTYLE-AS statement to check for point value
equalities. In addition, greater transparency is achieved with TABLETEMPLATE. The relationship between an MVAR
variable and its matching font assignment is clarified with _val_ EQ F&i as {font = (&&F&i)} in CELLSTYLE-AS.

COPYRIGHT STATEMENT
The paper, Macros and Conventional Macro Variables: Effective Tools for Customizing Tabular Output in SAS® ODS,
is protected by copyright law. This means if you would like to paraphrase original ideas, adapt output from figures or
attachments for your own use, or quote text from the paper in any type of publication you are welcome to do so. All
you need to do is to cite the paper. For all uses that result in corporate or individual profit, written permission must be
obtained from the author. Conditions for usage have been modified from http://www.whatiscopyright.org.

REFERENCES
[1] Haworth, Lauren E., Cynthia L. Zender, and Michele M. Burlew. Output Delivery System: The Basics and

Beyond. Cary, NC: SAS Institute Inc., 2009.
[2] SAS Institute Inc. SAS® 9.1 Output Delivery System: User’s Guide. Cary NC: SAS Institute Inc., 2004.

HOW TO LOCATE 426-2011.ZIP WHERE RELATED FILES ARE STORED:
AT SCREENCAST.COM

1) Go to http://www.screencast.com/users/PerryWatts

2) Click on README for a quick guide to website navigation.

3) Click on the folder icon labeled ODS Style Inheritance. This will take you to a subdirectory that contains ab-
stracts for related papers. Click on Macros and MacroVariables are Effective Tools for Building a Font Tracer
(9.2 SAS), then click on Attachments.

AT SASCOMMUNITY.ORG

1) Go to http://www.sascommunity.org

2) Follow sidebar links: Navigate>Popular Links>Presentations>SGF2011 Presentations

FILES ON 426-2011.ZIP
1) Text File: StylesDefault92.txt

2) SAS data set: looklike913.sas7bdat

3) SAS Programs: Mk92StylesDefaultTxtData.sas and mkFontTracer92.sas

4) The Font Tracer: containerFontTracer92.HTML

http://www.screencast.com/users/PerryWatts�
http://www.sascommunity.org/�

5

HOW TO LOCATE COLOR CHARTS
AT SCREENCAST.COM

1) Go to http://www.screencast.com/users/PerryWatts

2) Click on the folder icon labeled Color. This will take you to a subdirectory contains abstracts for the four papers
listed below. Color charts can either be found in the papers or in a couple of the image files posted in the sub-
directory.

PAPERS AVAILABLE FOR DOWNLOAD
Watts, Perry. Using ODS and the Macro Facility to Construct Color Charts and Scales for SAS Software Applica-

tions. Proceedings of the Twenty-Seventh SAS User Group International Conference, Cary, NC: SAS Institute,
2002, paper #125.

5)

Watts, Perry. Working with RGB and HLS Color Coding Systems in SAS Software. Proceedings of the Twenty-
Eighth SAS User Group International Conference, Seattle, WA, 2003, paper #136.

6)

Watts, Perry. Advanced Programming Techniques for Working with Color in SAS Software. Proceedings of the
Twenty-Ninth SAS User Group International Conference, Cary, NC: SAS Institute, 2004, paper #091.

7)

Watts, Perry. New Palettes for SAS Color Utility Macros. Proceedings of the Twenty-Ninth SAS User Group Inter-
national Conference, Cary, NC: SAS Institute, 2004, paper #162.

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their respective companies.

CONTACT INFORMATION
The author welcomes feedback via email at perryWatts@comcast.net

http://www.screencast.com/users/PerryWatts�
mailto:perryWatts@comcast.net�

6

APPENDIX: SCREEN SNAPSHOT OF THE FONT TRACER

	TRADEMARK CITATION
	CONTACT INFORMATION

