
1

Paper 251-2011

Add Style to ODS Output by Stretching Your Inheritance in Version 9.2 SAS®
Perry Watts, Stakana Analytics, Elkins Park, PA

ABSTRACT
Inheritance in ODS style templates has been simplified in Version 9.2 SAS. Now you don’t need a FROM clause in a
CLASS statement when you work with defined lineages in the Styles.Default template. However, lineages as well as
attributes can be changed when new style templates are created in ODS. This means that you need an ODS lineage
tracer that links inheritance from Base.Template.Style to associated attribute settings in the Styles.Default template.
Only by viewing attribute settings at their assigned locations in a lineage, is it possible to know for certain when
STYLE … FROM can safely be discarded in favor of the CLASS statement.

This paper shows by example how to use the lineage tracer plus additional tools to develop new styles1

INHERITANCE, LINEAGE AND FAMILY TREES

 from the
Styles.Default template. By studying the examples presented, you will be able stretch ODS inheritance to get the out-
put you want.

Since inheritance plays a pivotal role in ODS style definitions, terms need to be defined from the outset. The added
underlined text in the following definitions taken from The Concise Oxford Dictionary [2] shows that inheritance, li-
neage, and family tree are closely related:

inheritance n. 1 a thing that is inherited. 2 the act of inheriting.
inherit v. 2 tr. to derive (a quality or characteristic) genetically from one’s parents or ancestors .
lineage n. lineal descent; ancestry, pedigree.
lineal adj. 1 in the direct line of descent or ancestry. 2 linear; of or in lines.
family tree n. a chart showing relationships and lines of descent.

From the definitions above, it can be seen that the non-linear tree is the graphic of choice for representing relation-
ships among lineages. However, different motivations exist for graphing family and ODS trees. When it comes to a
family tree, you don’t actually inherit anything from your Aunt Suzie, but Aunt Suzie may express a different trait in the
gene-pool passed to both of you from your grandparents who are Aunt Suzie’s parents. Therefore, you will get a
more complete picture of what you will pass on to your descendents if (a) you have a lot of relatives and (b) you can
build a family tree that expresses their characteristics.

Inheritance is also restricted to the lineage when new style elements are defined in ODS. However, the composition
of a lineage can be altered in a new style definition. This means that the revised lineage can transform the equivalent
of an Aunt Suzie style element into a parent. With such flexibility, you need to have access to a tree-structure that
represents the parent template in its entirety. In short, you need to know your roots!

LINEAGES ARE DEFINED BY APPLYING RECURSION TO BASE.TEMPLATE.STYLE
Base.Template.Style is not organized by lineage, since style elements appear only once in the file. For example in
Figure 1, style elements 1 to 101 from the template must be scanned recursively to locate the six ancestors for
ROWHEADEREMPHASISFIXED. A similar search for the ancestors of ROWHEADERFIXED from a different lineage
also yields style elements 1, 76, 87, 91, and 98, since ROWHEADER is a parent to ROWHEADERFIXED and a
grandparent to ROWHEADEREMPHASISFIXED. This relationship means lineage listings always involve redundancy.

1 In ODS, the terms style and template are synonymous. The STYLE statements in Figure 1 define style elements not a style.

Figure 1. A lineage derived from Base.Template.Style is listed in Element Number order. CONTAINER has no ancestors (the
FROM clause is missing) and ROWHEADEREMPHASISFIXED has no descendents. Therefore, the lineage is complete.
 1 style Container
...
 76 style Cell from Container
...
 87 style HeadersAndFooters from Cell
...
 91 style Header from HeadersAndFooters
...
 98 style RowHeader from Header
...
101 style RowHeaderEmphasis from RowHeader

102 style RowHeaderEmphasisFixed from RowHeaderEmphasis

2

Lineages are typically displayed in an upside-down tree with the root node for the common ancestor at the top and
leaf nodes with no progeny at the base. This format is used in Figure 2 to display the CONTAINER lineages from the
Styles.Default.Template in 9.1.3 SAS. The number of lineages in the tree is equivalent to the number of leaf nodes
that are displayed. The tree originally appeared in the NESUG paper, Using Recursion to Trace Lineages in the
SAS® ODS Styles.Default Template presented in 2010 [8].

The existence of circles and numbers in Figure 2 illustrates a major problem with the top-down tree: there is not
enough space to label all the style elements by name. The problem is solved when the tree is rotated 90 degrees. In
Figure 3, a rotated tree derived from Base.Template.Style for the Styles.Default template in 9.2 SAS becomes the
home page for an updated lineage tracer.

Each row in the new tracer is reserved for a single, complete lineage. When rows are read left-to-right, the domain of
the examined style element is successively diminished. For example CONTAINER in Lineage #22 defines default font
and color settings for all tabular output, whereas only the font assigned to a row header is changed in
ROWHEADERFIXED. Along with the successive reduction in dominion comes a corresponding reduction in redun-
dancy. CONTAINER is always assigned to Element #1 in the Styles.Default lineage tracer whereas
ROWHEADERFIXED in Lineage #22 is not found anywhere else in the table.

Figure 2. The CONTAINER tree is wide and shallow. Nodes are sometimes represented by numbers or circles instead of
names to save space. The number of CONTAINER lineages accessible to the Styles.Default.Template increases from 60 to 66
in 9.2 SAS.

16

Figure 3. Only CONTAINER style elements are included in the new lineage tracer updated for 9.2 SAS. Graphics style ele-
ments have been omitted, and settings for FONTS and COLORS can be found in drill-down pages that list lineage-associated
attributes. The title is off-center, because the maximum number of style elements in a single lineage is 12.

…

3

CONNECTING LINEAGE TO ATTRIBUTE
While lineages of style elements in a template define the paths for inheritance, still missing in the discussion is infor-
mation about what actually is being inherited. In the case of ODS style templates attribute settings that control the
outward appearance of a report constitute the what. Attributes are the building blocks for the style elements, and they
can be modified in accordance with the rules for inheritance. Since attributes and lineages are so tightly bound, it
makes sense to access both in a single lineage tracer. However, knowledge of file structure is required, because li-
neage and attribute information for the Styles.Default template is stored separately in Sashelp.Tmplmst. In Figure 4
access to the separate sources for lineage and attribute information is provided.

While Base.Template.Style is used to create the home page in the lineage tracer, detailed information about attribute
settings for each of the 66 CONTAINER lineages is supplied by the Styles.Default template. The detailed information
is made available by hyperlink. Pressing #3 in Figure 3, for example, brings up a listing about Lineage #3 that is re-
produced in Figure 5.

Figure 4. To access Sashelp.Tmplmstr first make the Results window active in your SAS session. Next press VIEW then
TEMPLATES and select SasHelp.Tmplmstr.
.

To get to Base.Template.Style, select the BASE folder in Sashelp.Tmplmst. Next, press TEMPLATE followed by STYLE to
bring up PROC TEMPLATE for Base.Template.Style. The presence of FROM in the listing shows that Base.Template.Style
provides information about inheritance, not only for the default template but for all 53 templates that are in the STYLES folder.

To get to the Styles.Default template where style element definitions include attribute settings, select the STYLES folder from
SAShelp.Tmplmst. Next, press DEFAULT to bring up PROC TEMPLATE for Styles.Default. The Styles.Default template is the
only template in the STYLES folder that identifies all member style elements with a CLASS statement. What this says about
inheritance is discussed later in the paper.

proc template;
 define style Base.Template.Style;
 notes "Implicit parent for all style templates"
 ...
 style Container
 "Controls all container oriented elements." /
 abstract =| on;
 style Document from Container
 "Controls the various document bodies."
 style Body from Document
 "Controls the Body/Frame/Contents/Page file.";

proc template;
 define style Styles.Default;
 ...
 class Container /
 font = Fonts('DocFont')
 color = colors('docfg')
 backgroundcolor = colors('docbg');
 class Index /
 color = colors('contentfg')
 backgroundcolor = colors('contentbg');

4

SAS data sets used for creating the lineage tracer come from an application of the ODS SOURCE command to the
Base.Template.Style and Styles.Default templates. For drill-down displays such as the one shown in Figure 5, PROC
SQL is used for joining STYLE elements originating in Base.Template.Style to their counterpart CLASS elements
from Styles.Default. The SQL join is needed for the Figure 5 display, because style element descriptions and lineage
order are pulled from Base.Template.Style whereas the attribute settings plus font and color codes come from
Styles.Default.

Let’s go through the listing in Figure 5 to see what it tells us about ODS inheritance. First we see that FONT, COLOR
(for text), and BACKGROUNDCOLOR are assigned to the CONTAINER style element. CELL inherits these settings
and passes them on to DATA. DATA keeps FONT but changes COLOR and BACKGROUNDCOLOR. Finally,
DATAEMPTY inherits FONT from CONTAINER and the color settings from DATA. Take a look at the table in Figure
12 that uses DATAEMPTY to highlight missing values.

Additional enhancements have been made to fonts and colors in the lineage tracer, since they account for more than
50 percent of all the attribute settings in the Styles.Default template. The enhancements are made possibly by
processing three non-CONTAINER style elements in the Styles.Default template: FONTS, COLORS, and
COLOR_LIST. Table 1 below shows how CONTAINER fonts and colors listed in column #2 of the table in Figure 5
are mapped to their actual codes.

Table 1. The FONTS, COLORS, and COLOR_LIST style elements are used to map the assigned font and color attribute settings
in the CONTAINER style element to their actual codes. Mapping is achieved by creating input control data sets that are operated
on by PROC FORMAT. The text that is transferred to the lineage tracer is highlighted in blue.

Default Assignment Attribute Name FONTS or COLORS Mapping COLOR_LIST Mapping

FONT = Fonts('DocFont') DocFont 'docFont' = ("<sans-serif>, Helvetica, sans-serif",3);

COLOR = colors('docfg') docfg 'docfg' = color_list('fgA') 'fgA' = cx002288

BACKGROUNDCOLOR =
colors('docbg');

docbg 'docbg' = color_list('bgA') 'bgA' = cxE0E0E0

Color and font codes are not only listed in the drill-down pages of the lineage tracer, they are also applied to the rele-
vant cells in column #2 that list default settings. Thus BACKGROUNDCOLOR for CONTAINER at cxE0E0E0 in Fig-
ure 5 is a lighter gray than the background color used for DATA (cxD3D3D3).

Figure 5. Attributes, if set, are always affiliated with style elements in a lineage. The lineage tracer is created by formatting
PROC REPORT in ODS and sending the output to HTML. Since the Styles.Default template is being visually described in the
lineage tracer, STYLE=STYLES.DEFAULT is used in its construction. The algorithm for inserting internal hyperlinks comes from
Carpenter’s Complete Guide to the SAS® Report Procedure [1, p. 257-260].

5

Color codes formatted as cxRRGGBB in SAS use hexadecimals in the RGB (red| green| blue) color coding system.
Each color component ranges from 00 – FF which translates to 0 – 255 in decimal. Light colors are generated when
code components contain high values. Codes with low component values map to dark colors. In the case of Lineage
#3 displayed in Figure 5, dark colors (cx002288 and cx000000) are defined as foreground colors for text. Since dark
text is more visible on a light background, the background colors are much lighter (cxE0E0E0 and cxD3D3D3). Note
that the background colors in Lineage #3 have the same values for each of the code components. That means they
map to a shade of gray which is devoid of hue. Black at cx000000 and white at cxFFFFFF are also devoid of hue.
Finally, when components in an RGB code have different values, hue will be determined by the component with the
highest value. Therefore, we can know that cx002288 for the COLOR attribute in CONTAINER will be a dark blue by
just looking at the RGB code. For additional information about color, please see papers cited at the end of the paper
and stored online at the author’s screencast.com account. Examples of color spaces, scales, and charts can also be
found at screencast.com. What is meant by each of these terms is defined visually in Advanced Programming Tech-
niques for Working with Color in SAS® Software [7] and reproduced in Figure 6 below.

We are not completely finished with our discussion about Figure 5. At this point, you may be wondering why nothing
stands out in the cells where the default color assignments are listed for the DATA style element. Foreground and
background colors in these cells are the same as those in surrounding cells. The lack of uniqueness can be attributed
to the fact that the Styles.Default template is used for generating the lineage tracer. DATA style element settings in
the template are used to format every cell in the DATA region of a PROC REPORT table.

You can download a copy of the ODS|HTML lineage tracer from the author’s web accounts. How it is used is demon-
strated when instructions for constructing new style templates are presented later in the paper. Also available by
download is the ODS|HTML attribute descriptor with definitions originating in the 9.1 and 9.2 ODS User’s Guides
[11(p.296-300) 12(p.480-487)].

ADDITIONAL LEVELS OF INHERITANCE IN ODS

Inheritance at the Style Template Level
Inheritance exists among the Sashelp.Tmplmst style templates. This means 44 lineages of the 53 style templates can
be arranged in a tree. The lineage tracer for style templates is reproduced in part in Figure 7. An enhanced version of
the complete tree can be found in the Appendix.

Figure 6. Pictorial definitions for color spaces, charts and scales.
Color spaces are 3-D structures that
show how a gamut of codes is
mapped in a color system. The RGB
space is a cube whereas the HLS
space is double-ended cone.

Color charts show colors as discrete
entities in tabular format. Here are the
unique SAS predefined colors and a
digitized listing of a shade of blue.

Color scales represent colors along a
continuum. Here are hue, lightness
and saturation scales built with the
HLS color coding system.

Figure 7. A lineage tracer for Sashelp.Tmplmst style templates. While Base.Template.Style is defined as the “implicit parent for
all style templates” in the note from Figure 3, inheritance among style templates is traced by the PARENT statement in a tem-
plate definition. For example, Parent=styles.journal defines the immediate predecessor in the Styles.Journal2 template.

 …

6

Inheritance for Font Definitions
A type of inheritance also exists at the attribute level for font definitions. In the case of the Styles.Default template, all
font references are in FONT format where four font components are combined into a single value assignment. Here is
the syntax from the attribute descriptor that is included in the Appendix as a screen snapshot:

FONT= [face(s), size, keywords] where keywords reference font weight, style and width.
Examples of font settings taken from the FONT class statement in the Styles:Default template include:

'TitleFont' = ("<sans-serif>, Helvetica, sans-serif", 5, bold italic)
'FixedHeadingFont' = ("<monospace>, Courier, monospace",2)

For FixedHeadingFont font weight, style and width are set by default to MEDIUM, ROMAN and NORMAL.
To increase the font size in TITLEFONT, just enter:

FONTSIZE=6;
What happens is that FONTSIZE is effectively integrated into a new FONT definition as:

'TitleFont' = ("<sans-serif>, Helvetica, sans-serif", 6, bold italic)

DEFINING NEW STYLE TEMPLATES IN ODS

Style templates are easier to define in Version 9.2 SAS. Now it is possible to ignore inheritance with the new CLASS
statement, because underlying lineage definitions are imported intact from the parent template. In 9.1.3 SAS
ABSTRACT style elements also had to be identified, since they could only be changed with a REPLACE statement.
Since REPLACE is not supported in 9.2 SAS, there is no longer any need to distinguish ABSTRACT style elements
from regular ones. Inheritance works just the same regardless of style element type.

Despite the convenience of the new CLASS statement, STYLE and STYLE … FROM are still needed for changing
lineage definitions in a new style template. That STYLE continues to play an important role in ODS can be confirmed
by observing that 45 out of the 53 styles in Sashelp.Tmplmst rely exclusively on the STYLE keyword to define mem-
ber style elements. CLASS, on the other hand, is used exclusively only in the Styles.Default template. For a complete
listing of keyword status by template, see the color coded version of the Sashelp.Template lineage tracer in the Ap-
pendix. Because STYLE is still used in 9.2 SAS, detailed reviews for all three element definition types: CLASS,
STYLE, and STYLE … FROM are included in separate sub-sections below.

Here is how the sashelp.shoes data set has been changed to support all the examples in this section:
data shoes2(keep=product subsidiary stores rename=(stores=nstores));
 set sashelp.shoes;
 if product in ('Boot','Sandal','Slipper','Sport Shoe');
run;

In Example #1, no new style is being defined. Instead the Styles.Default template is used to format output sent to
HTML. The source code in Example #1 illustrates Cynthia Zender’s ODS “sandwich” metaphor where PROC FREQ is
surrounded by ODS commands [10]. In subsequent examples only PROC TEMPLATE source code for new style de-
finitions is displayed alongside screen snapshots of HTML output.

1) PROC FREQ output is formatted by the Default template in ODS.
Code HTML Output

ods path work.temp(update)
 sasuser.templat(update)
 sashelp.tmplmst(read);
ods html path="&htmPath" (url=none)
 file='default.html' style=STYLES.DEFAULT;
 title 'Default Template Output';
 proc freq data=styleApp.shoes2;
 weight nstores;
 tables product;
 run;
ods _all_ close;

To validate colors and fonts displayed in the screen snapshot from Example #1, check lineages #2(DATA),
#20(HEADER|ROWHEADER), #64(PROCTITLE), and #66(SYSTEMTITLE) in the lineage tracer.

USING THE CLASS STATEMENT IN STYLE DEFINITIONS
The CLASS statement automatically preserves the lineage structure defined in Base.Template.Style that is passed
down to the Styles.Default template. By looking at the lineage trace in Example #2 it is easy to see that STYLE

7

header from header and CLASS Header produce identical results. In the examples that follow, altered child
style elements in the lineage traces are denoted in red or blue. Attribute settings defined in the child-elements prevail
and are passed down to the descendents (also colored in red or blue).

2) Change a single attribute in HEADER.
Code HTML Output

proc template;
 define style styles.ChangeHeader1;
 parent=styles.default;
 class header /
 font=(arial, 14pt, bold);
 end;
run;

Adapted From
(#20 in the Lineage Tracer)

In Example #3, settings for non-lineage attributes BORDERWIDTH and BORDERCOLOR are changed in HEADER
with a CLASS statement. The assigned COLOR for HEADERSANDFOOTERS is copied from the Default lineage
tracer and pasted directly into SAS thus insuring that border and header text colors match perfectly. As expected, the
lineage trace from Example #2 (not shown) remains unchanged. A Header cell is selected with the STYLE_POPUP
tagset template to track the non-lineage attributes. POPUP results are also displayed in Example #3.

3) Change Non-Lineage Attributes in HEADER.
Code HTML Output

proc template;
 define style styles.NonLineageAttrs;
 parent=styles.default;
 class Header/
 font=(arial, 14pt, bold)
 borderwidth=3;
 bordercolor=colors('headerfg');
 end;
run;

Even though the non-lineage attributes are inserted properly into the ODS output, the pop-up window doesn’t do a
very good job announcing their arrival. BORDERWIDTH is registered but no value is displayed. BORDERCOLOR is
not listed at all.

In Example #4, attributes for two style elements in the same lineage are changed. In #4a the order of the CLASS
statements is the same as the listing for lineage #20 in the lineage tracer. The desired output is produced: a larger
font size for row and column headers, red text for HEADER, and blue text for ROWHEADER. In #4b the same output
is generated even though the order of the CLASS statements in the new style definition is reversed.

ODS TAGSETS.STYLE_POPUP path="&htmpath"
 FILE='StyleDiag.HTML'
 style=NonLineageAttrs;
 proc freq data=styleApp.shoes2;
 weight nstores;
 tables product;
run;
ods _all_ close;

Container HeadersAndFooters Header Cell Header RowHeader

8

4 a) Change Two Style Elements in the Same Lineage.
Code HTML Output

proc template;
 define style styles.TwoClassesA;
 parent=styles.default;
 class header /
 font=(arial, 14pt, bold)
 color=red;
 class rowheader /
 color=blue;
 end;
run;

Adapted From
#20 in the Lineage Tracer
Adapted From
the first lineage defined

If the CLASS statement did not trigger Base.Template.Style to preserve lineage definitions in a new style template,
ROWHEADER in #4b would have red text just like HEADER.

4 b) Change Two Style Elements in the Same Lineage
Code HTML Output

proc template;
 define style styles.TwoClassesB;
 parent=styles.default;
 class rowheader /
 color=blue;
 class header /
 font=(arial, 14pt, bold)
 color=red;
 end;
run;

Adapted From
#20 in the Lineage Tracer
Adapted From
the first lineage

The screen snapshot of the lineage tracer in Figure 8 now includes SYSTEMTITLEn elements highlighted in blue to
indicate that they reside only in Base.Template.Style. Despite their origin, inheritance works just the same as they
had homes in both the Base.Template.Style and Styles.Default templates. This claim is supported in Example #5
where SYSTEMTITLE2 and SYSTEMTITLE3 are processed alongside HEADERSANDFOOTERS.

Container HeadersAndFooters Header Cell Header RowHeader

RowHeader

Figure 8. From the screen snapshot of the lineage tracer, it can be seen that TITLESANDFOOTERS resides in both the
Base.Template.Style and Styles.Default templates. On the other hand, SYSTEMTITLE2 and SYSTEMTITLE3 are only found in
Base.Template.Style.

…

…

Container HeadersAndFooters Cell Header RowHeader

Container HeadersAndFooters Header Cell RowHeader

Container HeadersAndFooters Header Cell Header RowHeader

RowHeader

9

When a new style template is being created, it is not important to know if a given style element originates in the par-
ent or grandparent template. CLASS processing works the same regardless of origin.

5) Define a Style that includes Style Elements that originate in Base.Template.Style only
Code HTML Output

proc template;
 define style styles.BaseOnlyClass;
 parent=styles.default;
 class HeadersAndFooters/
 font=(arial, 12pt, bold)
 borderwidth=2
 bordercolor=colors('headerfg');
 class systemTitle2 /
 foreground=black
 fontStyle=roman
 fontSize=12pt;
 class systemTitle3 / fontSize=10pt;
 end;
run;

Adapted from
#20 in the Lineage Tracer
Adapted from
#66 in the Lineage Tracer
Adapted from
the second lineage

One of the most useful applications of the CLASS statement involves updating the FONTS style element. Until re-
cently, changing a single font setting involved first copying and pasting the entire FONTS style element into a new
style definition and then making the desired change. Without care being taken to document the source code, it would
impossible later on to determine exactly what had been changed. The CLASS statement in Example #6 provides the
perfect solution to this problem. As with all CLASS statements, child-FONTS inherits attribute settings from the par-
ent-FONTS. Notice from the lineage trace in Example #6 that FONTS does not descend from CONTAINER. Instead,
FONTS is the sole member of a different lineage.

STARTING A NEW LINEAGE WITH STYLE WITHOUT FROM
In this section and the next, the CLASS statement is replaced by STYLE or STYLE…FROM. In the ODS User’s
Guide for 9.2 SAS, the implications of omitting the FROM option in a STYLE statement are described as follows:

If there is a like-named style element within the child style definition that does not have a FROM
option specified, then the style element from the child style definition overrides the style element
from the parent style definition [12, p. 521].

In “lineage-speak” this means that a new lineage is defined when an unadorned STYLE statement is issued. Nothing
is inherited from the parent and, by extension, from any ancestor. Nevertheless, the newly defined style element
passes attribute settings on to its descendents. In Example #7, output changes dramatically when CLASS FONTS
becomes STYLE FONTS. All the text strings in the output have the same font: Courier, 3, bold.

6) Change the FONTS Style Element with a CLASS statement
Code HTML Output

proc template;
 define style styles.OneFontChange;
 parent=styles.default;
 CLASS fonts /
 'docFont'=("Courier",3,Bold);
 end;
run;

Not in the Lineage Tracer

Container HeadersAndFooters Cell HeadersAndFooters Header RowHeader

Container TitlesAndFooters SystemTitle SystemTitle2 SystemTitle2

SystemTitle3 Container TitlesAndFooters SystemTitle SystemTitle3 SystemTitle2

Fonts Fonts

10

7) Change the FONTS Style Element with a STYLE statement
Code HTML Output

proc template;
 define style styles.OneFontChangeWstyle;
 parent=styles.default;
 STYLE fonts /
 'docFont'=("Courier",3,Bold);
 end;
run;

 The FONTS style element now has no ancestors or descendents

In Base.Template.Style, CONTAINER is defined as a common ancestor, meaning that like FONTS it has no ancestor,
but in contrast to FONTS, it has many descendents. In Example #8 below, all attributes listed in parent-CONTAINER
are assigned values in child-CONTAINER. TEXTDECORATION, new in 9.2 SAS, is also assigned to the mix. The
addition of TEXTDECORATION with a value of UNDERLINE proves that the newly defined child-CONTAINER
passes attribute settings to its descendents. However, the descendents of CONTAINER are not being included in the
lineage panel at the base of Figure 8, because the panel would then have to accommodate the entire CONTAINER
tree from the lineage tracer!

A description of TEXTDECORATION can be found in AttributeDescriptor92.html available by download. Attributes are
defined and described by example in the descriptor. Aliases to version 9.1.3 SAS are also provided, and if an
attribute is new to 9.2 SAS, it is highlighted in blue. (See also Appendix 3).

All text in the HTML output is now underlined thanks to the addition of TEXTDECORATION to CONTAINER. You also
may be wondering how or why cxCDD9FF is chosen as the new background color, and why the original CONTAINER
gray in the SYSTEM and PROC titles is not erased. To find out about the persistence of gray in the output, check out
lineage #64 in the lineage tracer. There you will see that cxE0E0E0 is assigned as a background color to both
TITLESANDFOOTERS and PROCTITLE. Since these style elements come after CONTAINER in the lineage, their
color settings prevail.

The decision to go with cxCDD9FF is more involved. Working with color involves restraint. As Jenny Preece points
out in Human-Computer Interaction:

Colour coding provides many opportunities for coding and structuring information at the interface as well as
making it pleasant and enjoyable to look at. However, excessive use of colour can result in colour pollution,
particularly when highly saturated colours such as ‘full’ red and a ‘deep’ blue are used [6,p.89].

A good way to lessen color pollution is to populate ODS output with related hues. cxEFF3FF is just a lighter variation
of cx002288 that is assigned to COLOR via ‘docfg’ in Example #8. Obtaining the RGB code for a lighter shade of blue
involves executing the macro function, GETALIGHTER_DARKERCOLOR also available for download. What the ma-
cro does is to take a user-supplied RGB code and convert it to HLS described in Figure 6. Next, a lightness percent
also supplied by the user is used to calculate a new value for ‘L’ in the HLS code. Finally, the new HLS value is trans-
lated back into RGB and delivered as output to the macro function call.

In Example #8a, the gray title backgrounds are fixed with CLASS statements, and in Example #16 cx00269A, also
derived from cx002288 is added to the mix.

8) Change CONTAINER with a STYLE statement
Code HTML Output

proc template;
 define style styles.ChangeContainer1;
 parent=styles.default;
 STYLE Container /
 FONT = Fonts('DocFont')
 COLOR = colors('docfg')
 BACKGROUNDCOLOR = cxEFF3FF
 TEXTDECORATION = underline;
 end;
run;

 Does Not Define a Lineage. It defines a tree.

Fonts

Container

11

8a) Improve appearances with a couple of CLASS Statements
Code HTML Output

proc template;
 define style styles.ChangeContainer1a;
 parent=styles.default;
 STYLE Container /
 FONT = Fonts('DocFont')
 COLOR = colors('docfg')
 BACKGROUNDCOLOR = cxEFF3FF
 TEXTDECORATION = underline;
 Class TitlesAndFooters /
 BACKGROUNDCOLOR = cxEFF3FF;
 Class ProcTitle /
 BACKGROUNDCOLOR = cxEFF3FF;
 end;
run;

In Example #9 all attributes are removed in the definition of CONTAINER. The only visible effect of their removal is
that the background color changes from light gray to white. White is the default background color in HTML. Inherit-
ance from CONTAINER descendents is preserved. That means table and titles retain their default settings.

9) Remove all Attributes from the Definition for CONTAINER
Code HTML Output

proc template;
 define style styles.ChangeContainer2;
 parent=styles.default;
 STYLE Container;
 end;
 run;

As a final example of STYLE with no FROM, attributes are modified for HEADER. In Example #10, no background
color is defined for HEADER. HEADER can’t inherit from CONTAINER, because HEADER now defines a new li-
neage. Thus the default HTML white background is assigned to HEADER and to its descendent, ROWHEADER.

10) Change the HEADER Style Element with a STYLE statement
Code HTML Output

proc template;
 define style styles.ChangeHeader;
 parent=styles.default;
 STYLE Header /
 FONT = fonts('HeadingFont')
 COLOR = BLACK;
 end;
 run;

New Style Lineage

CHANGING LINEAGE DEFINITIONS WITH STYLE … FROM
STYLE … FROM, saved for last, is the most complicated system of inheritance in ODS. From the 9.2 User’s Guide:

If there is a like-named style element within the child style definition that does have the FROM option specified,
then the child style element absorbs the style attributes from the parent style element. If there are like-named style
attributes in the two style elements, then the style attributes from the child style element are used [12, p. 521].

In Example #11, STYLE … FROM is used to restore defaults to ROWHEADER after HEADER is changed in a new
style definition. This example is adapted from SAS® Style Templates: Always in Fashion by Cynthia Zender [9].
ROWHEADER stays black in the lineage trace, because it is not changed. However, since HEADER has been re-
moved in the second style element definition, the connecting arrow is labeled with a summing junction ().

Header RowHeader

12

11) Use Two Lineages to Restore Default Settings to ROWHEADER with STYLE…FROM
Code HTML Output

proc template;
 define style styles.ChangeHeaderOnly;
 parent=styles.default;
 class header /
 font=(arial, 14pt, bold)
 foreground=blue;
 style rowHeader FROM headersAndFooters;
 end;
run;

Adapted From
#20 in the Lineage Tracer
Adapted From
#20 in the Lineage Tracer

Let’s replace the HTML white background from Example #10 with the default background color from CONTAINER in
Example #12. Since changes are made to HEADER, it is colored in red.

12) Inherit from a Distant Ancestor with STYLE…FROM
Code HTML Output

proc template;
 define style styles.HeaderFromContainer;
 parent=styles.default;
 style HEADER from CONTAINER /
 FONT = fonts('HeadingFont')
 COLOR = BLACK;
 end;
run;

Adapted From
#20 in the Lineage Tracer

In Example #13, two STYLE statements are issued so that HEADER can inherit from ROWHEADER.

13) Inherit from a Descendent with STYLE…FROM
Code HTML Output

proc template;
 define style styles.HeaderFromRowHeader;
 parent=styles.default;
 style rowheader from headersAndFooters /
 font = (arial,12pt,bold)
 foreground=blue;
 style header from rowheader /
 foreground=red;
 end;
run;

Adapted From
#20 in the Lineage Tracer

Example #14 is similar to Example #11. In both, two lineages are created to get the desired output. In Example #11,
the second lineage was defined to restore defaults, whereas in Example #14 it is used to transfer CONTAINER set-
tings to both HEADER and DATA. In Examples #14 and #16 below, the PROC title is being removed with ODS
NOPTITLE in order to conserve space. Additional information about NOPTITLE can be found in Output Delivery Sys-
tem: The Basics and Beyond by Lauren Haworth, Cynthia Zender and Michelle Burlew[5, p. 436].

Container HeadersAndFooters Header Cell Header

RowHeader Container HeadersAndFooters Cell

Container Header

Container HeadersAndFooters Cell Header RowHeader

13

14) Create Uniform Tabular Output from Two Lineages with STYLE…FROM
Code HTML Output

proc template;
 define style styles.HdrDataFromContainer;
 parent=styles.default;
 class CONTAINER /
 font=(arial, 14pt, bold)
 foreground=black;
 style HEADER from CONTAINER;
 style DATA from CONTAINER;
 end;
run;

Adapted From
#20 in the Lineage Tracer
Adapted From
Previous lineage

Finally, in Example #15 cross-lineage inheritance is used to generate uniform output for both titles and table. Use the
Lineage Tracer to find out how and why the code works. Why do you think attribute settings in SYSTEMTITLE had to
be changed? Remove them to verify your answer.

15) Create Uniform Output with Cross-Lineage Inheritance Using STYLE … FROM
Code HTML Output

proc template;
 define style styles.Output2HandF2Data;
 parent=styles.default;
 class output /
 backgroundcolor=colors('docbg')
 bordercolor=colors('docfg')
 borderwidth=2
 borderspacing=2;
 style headersAndFooters from output;
 style data from headersAndFooters;
 style systemTitle from data /
 padding=0
 borderwidth=0
 borderspacing=0;
 style procTitle from systemTitle;
 end;

Lineage Number
of first appearance #1 #52 #6 #2 #66 #64

CREATE A STYLE THAT EMBODIES COLOR PRINCIPLES DESCRIBED IN THE PAPER
Example #16 completes our discussion about styles. Three related shades of blue are used to color the entire output.
Since output regions are naturally distinguished by different font settings, lineage-hopping for uniform output with
STYLE…FROM is being replaced with CLASS statements where inheritance is restricted to a single lineage.

16) Colors for HEADERSANDFOOTERS and DATA are almost inverses of each other. Different
font settings used for region identification are preserved with CLASS statements.
proc template;
define style styles.BlueOutput;
 parent=styles.default;
 class Container /
 backgroundcolor = cxEFF3FF;
 class HeadersAndFooters /
 color=cxEFF3FF fontsize=12pt
 backgroundcolor=cx00269A;
 class Output /
 backgroundcolor= cxEFF3FF
 bordercolor=colors('docfg')
 borderwidth=2 borderspacing=2;
 style Data from Output /
 color=colors('docfg')
 backgroundcolor=cxEFF3FF;
 class SystemTitle /
 backgroundcolor = cxEFF3FF
 fontStyle=roman fontSize=14pt;

 class SystemTitle2 / fontSize=12pt;
end; run;

Container Header

Data

Container

Container

Output Data Container HeadersAndFooters SystemTitle ProcTitle

14

MAPPING STYLE TEMPLATES TO SAS PROCS: MEANS, FREQ, PRINT AND REPORT
Once styles are defined, they are mapped to SAS procedures that make up the “fixings” of the ODS “sandwich”.
Mapping occurs automatically if standard names such as HEADER and ROWHEADER are used in style definitions.

While automatic, mapping is not uniform among the various SAS PROCs. As we have seen, PROC FREQ automati-
cally generates HEADERS, ROWHEADERS, and DATA. However, ROWHEADERS are not formatted in PROC
MEANS or in PROC REPORT. From Delwiche and Slaugther [4,p. 167] we learn that output from PROC PRINT can
change depending on which options are set for the procedure.

ODS output contained in the figures for this section use the Styles.Default template. To show that no style elements
are named in ODS, source code for the first two PROC invocations in Figure 8 is listed below:

ods html path="&htmPath" (url=none)
file='defaultOtherProcs.html' style=STYLES.Default;

 title 'PROC MEANS with Automatic Style Element Mapping';
 title2 '(Only HEADER is Used by Default)';
 proc means data=sashelp.heart maxdec=3;
 var Height Weight Diastolic Systolic;
 run;

 title 'PROC PRINT with Automatic Style Element Mapping';
 title2 '(HEADER and ROWHEADER are Used by Default)';
 proc print data=styleApp.shoes2(obs=7) label;
 run;
 ...
ods _all_ close;
ods listing;

Figure 8. Output generated from the Default style for the MEANS and PRINT procedures shows that variation exists when it
comes to automatic mapping. Nevertheless, SYSTEMTITLE, SYSTEMTITLE2, and DATA are the same in all four mappings.

15

Occasionally conflicts arise between ODS and the SAS PROC that is being exercised. For example, observe in Fig-
ure 9 that the ODS settings for the JUST attribute are overruled in PROC FREQ.

Figure 9. Headers in PROC FREQ are always right-justified. This makes sense, since all the DATA cells display numbers. Row
headers, on the other hand, are left-justified to accommodate character strings. Note that PRODUCT is defined as a row header,
not a header in PROC FREQ.
proc template;
 define style styles.FreqJust;
 parent=styles.blueOutput;
 class header/
 cellwidth=1in
 just=left; /* GET RIGHT */
 class rowheader/
 cellheight=0.5in
 just=right; /* GET LEFT */
 end;
run;

THE SPECIAL CASE OF PROC REPORT
While PROC REPORT has the same limited default mapping capabilities as PROC MEANS, it is very easy as Vin-
cent DelGobbo points out to format columns in the REPORT, TABULATE and PRINT procedures [3]. In Figure 10,
default mappings in PROC REPORT are displayed first. Then in Figure 11, style element overrides are applied to the
first two columns in PROC REPORT. Finally in Figure 12, overrides are applied to user-named style elements that
are abbreviations of the last four elements in Lineage #20. Also in Figure 12, the missing value in the “Total Returns”
column is formatted with the DATAEMPTY style element that was introduced in the discussion about lineage #3 in
Figure 5. The characters ‘Missing’ are inserted into the cell along with the altered colors by exercising RETFMT refe-
renced in the DEFINE statement of PROC REPORT. RETFMT works well, because it maps all non-missing values to
the embedded format, DOLLAR8.

Figure 10. The HEADER style element is mapped by default in PROC REPORT.
ods html … style=STYLES.Default;
proc report data=shoes4 nowindows;
column
Product Subsidiary Nstores Sales Returns;
 Define Product / ORDER;
 Define Subsidiary / ORDER;
 Define nStores / display '# Stores';
 Define Sales / display format=dollar8.;
 Define Returns / display format=dollar8.;
run;
ods HTML close;

Figure 11. Style element overrides are implemented with STYLE(COLUMN)=STYLE-ELEMENT NAME from Delgobbo [3].
ods html … style=STYLES.Default;
proc report data=shoes4 nowindows
split='*';
column
Product Subsidiary Nstores Sales Returns;
 Define Product / ORDER
 'Product*(ROWHEADER)'
 STYLE(COLUMN)=ROWHEADER;
 Define Subsidiary / ORDER
 'Subsidiary*(ROWHEADEREMPHASIS)'
 STYLE(COLUMN)=ROWHEADEREMPHASIS;
 Define nStores / display '# Stores';
 Define Sales / display format=dollar8.;
 Define Returns / display format=dollar8.;
run;
ods HTML close;

16

Figure 12. Style elements are renamed in PROC TEMPLATE with STYLE … FROM statements to save space. The Missing
value in RETURNS is highlighted by the assignment of DATAEMPTY in a compute block and by the application of RETFMT.
proc template;
define style styles.ColumnsOutput;
parent=styles.default;
 style Hdr from Header;
 style RowHdr from RowHeader;
 style RowHdrEmph from RowHeaderEmphasis;
 style RowHdrEmphFx from RowHeaderEmphasisFixed;
 class SystemTitle2 / fontSize=10pt;
 class DATAEMPTY / backgroundcolor=colors('headerfg') color=colors('headerbg');
end;
run;

proc format;
 value RetFmt .='Missing' other=[dollar8.];
run;

ods html path="&htmPath" (url=none)
body='ColumnsOutput.HTML'
style=ColumnsOutput;

proc report
 data=shoes4wMissVal nowindows nowindows split='*';
 column Product Subsidiary nstores Sales Returns;
 Define Product / ORDER 'Product*(Hdr)' STYLE(COLUMN)=Hdr;
 Define Subsidiary / ORDER 'Subsidiary*(RowHdr)' STYLE(COLUMN)=RowHdr;
 Define nStores / display '# Stores*(RowHdrEmph)' STYLE(COLUMN)=RowHdrEmph ;
 Define Sales / display 'Total Sales*(RowHdrEmphFx)' STYLE(COLUMN)=RowHdrEmphFx
 format=dollar8.;
 Define Returns / display 'Total Returns*DATA(default)*OR*DATAEMPTY(missing)'
 format=RetFmt.;
 compute Returns;
 if Returns eq . then
 call define ('_c5_', "style", "style=DATAEMPTY");
 endcomp;
run;

ods HTML close;

CONCLUSION: USE LINEAGE TO UNDERSTAND HOW STYLES ARE CONSTRUCTED IN
ODS
Lineage is the major construct presented in this paper. By understanding that lineage always defines a style ele-
ment’s ancestors and descendents, it becomes possible to communicate visually how inheritance works in ODS. The
visual tool is the lineage tracer also used for modeling individual traces found in many of the examples presented in
the paper.

It should be noted that the tables of ODS Style Elements in Appendix 4 of the User’s Guide are not substitutes for the
lineage tracer. Multiple, partial lineages are listed in each of the tables that comprise Appendix 4. Again, what you
need is a tracer that lists all the lineages in a style template separately and completely.

17

As a final exercise, take a look at the two styles, STYLE1 and STYLE2 on page 521 in the 9.2 ODS User’s Guide.
STYLE2 inherits from STYLE1. Before reviewing Example Code 10.5, on the following page, see if you can predict
with greater ease what the final attribute settings will be from the following traces:

From STYLE1:

Lineage #1

Lineage #2

Lineage #3

From STYLE2:

Lineage #1

Lineage #2

Lineage #3

As in the previous examples, the black style elements in STYLE2 come from STYLE1. Attribute settings only have to
be calculated for style elements that have asterisks appended to their names in STYLE2. Remember if the same
attribute is set in a new style element with the same name as the old one (e.g. table from table), the attribute setting
in new definition prevails; i.e. take the final attribute setting from table. If you complete this exercise and learn what is
going on in each of the examples presented in the paper, you will be able to stretch your inheritance to get the output
you want when you create a new style template.

COPYRIGHT STATEMENT
The paper, Add Style to ODS Output by Stretching Your Inheritance in Version 9.2 SAS®, along with all associated
files is protected by copyright law. This means if you would like to paraphrase original ideas, adapt output from fig-
ures or attachments for your own use, or quote text from the paper in any type of publication you are welcome to do
so. All you need to do is to cite the paper. For all uses that result in corporate or individual profit, written permission
must be obtained from the author. Conditions for usage have been modified from http://www.whatiscopyright.org.

REFERENCES
[1] Carpenter, Art. Carpenter's Complete Guide to the SAS® REPORT Procedure. Cary, NC: SAS Institute Inc.,

2007.
[2] The Concise Oxford Dictionary of Current English: Ninth Edition. Edited by Della Thompson. Oxford, England:

Oxford University Press., 1995.
[3] Delgobbo, Vincent. Traffic Lighting Your Multi-Sheet Microsoft Excel Workbooks the Easy Way with SAS®. Proceed-

ings of the 23rd Annual Northeast SAS Users Group Conference. Baltimore, MD 2010, paper #HW01.
[4] Delwiche, Lora D. and Susan J. Slaughter. The Little SAS Book: A Primer, Fourth Edition. Cary, NC: SAS Insti-

tute Inc., 2008.
[5] Haworth, Lauren E., Cynthia L. Zender, and Michele M. Burlew. Output Delivery System: The Basics and

Beyond. Cary, NC: SAS Institute Inc., 2009.
[6] Preece, Jenny, et al. Human-Computer Interaction. Harlow, England: Addison-Wesley, 1994.
[7] Watts, Perry. Advanced Programming Techniques for Working with Color in SAS Software. Proceedings of the

Twenty-Ninth SAS User Group International Conference, Cary, NC: SAS Institute, 2004, paper #091.
[8] Watts, Perry. Using Recursion to Trace Lineages in the SAS® ODS Styles.Default.Template. Proceedings of the

23rd Annual Northeast SAS Users Group Conference. Baltimore, MD 2010, paper #BB13.
[9] Zender, Cynthia L. SAS® Style Templates: Always in Fashion. Proceedings of the SAS® Global Forum 2010 Con-

ference. Seattle, WA, 2010, paper #033-2010.
[10] Zender, Cynthia L. Tiptoe through the Templates. Proceedings of the SAS® Global Forum 2009 Conference. Seat-

tle, WA, 2009, paper #227-2009.
SAS INSTITUTE REFERENCES:
[11] SAS Institute Inc. SAS 9.1 Output Delivery System: User’s Guide, Cary NC: SAS Institute Inc., 2004.
[12] SAS Institute Inc. SAS 9.2 Output Delivery System: User’s Guide, Cary NC: SAS Institute Inc., 2008.

output

fonts

header

table

output*

fonts

header *

table

fonts*

table *

18

HOW TO LOCATE 251-2011.ZIP WHERE RELATED FILES ARE STORED:
AT SCREENCAST.COM

1) Go to http://www.screencast.com/users/PerryWatts

2) Click on README for a quick guide to website navigation.

3) Click on the folder icon labeled ODS Style Inheritance. This will take you to a subdirectory that contains ab-
stracts for related papers. Click on Add Style to ODS Output by Stretching your Inheritance in Version 9.2 SAS,
then click on “Attachments”.

AT SASCOMMUNITY.ORG

1) Go to http://www.sascommunity.org

2) Follow sidebar links: Navigate>Popular Links>Presentations>SGF2011 Presentations

FILES ON 251-2011.ZIP:
1) The SHOES2 and SHOES3 data sets

2) SAS COLOR MACROS
• HLStoRGB.
• RGBDec.sas
• RGBHex.sas
• RGBtoHLS.sas
• RGBtoHUE.sas
• RGBtoLUM.sas
• RGBtoSAT.sas

The calling program:
•GetALighter_DarkerColor.sas

3) Programs for Figures and Examples
• UseCLASSstmt.sas
• UseStyleWITHfrom.sas
• UseSTYLEwNOfrom.sas
• UsingOtherProcsByDefault.sas
• UsingProcReport.sas

4) HTML Files (See Appendix for screen snapshots of all except Container92Lineages.HTML , shown in Figures 3,5, and 8)
• AttributeDescriptor92.HTML
• Container92Lineages.HTML
• Normal92Lineages.HTML
• Style92TemplateLineagesHighlighted.HTML

PAPERS IN THE COLOR FOLDER ON SCREENCAST.COM
Watts, Perry. Using ODS and the Macro Facility to Construct Color Charts and Scales for SAS Software Applications.

Proceedings of the Twenty-Seventh SAS User Group International Conference, Cary, NC: SAS Institute, 2002,
paper #125.

Watts, Perry. Working with RGB and HLS Color Coding Systems in SAS Software. Proceedings of the Twenty-Eighth
SAS User Group International Conference, Seattle, WA, 2003, paper #136.

Watts, Perry. Advanced Programming Techniques for Working with Color in SAS Software. Proceedings of the Twenty-
Ninth SAS User Group International Conference, Cary, NC: SAS Institute, 2004, paper #091.

Watts, Perry. New Palettes for SAS Color Utility Macros. Proceedings of the Twenty-Ninth SAS User Group Interna-
tional Conference, Cary, NC: SAS Institute, 2004, paper #162.

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their respective companies.

CONTACT INFORMATION
The author welcomes feedback via email at perryWatts@comcast.net

http://www.screencast.com/users/PerryWatts�
http://www.sascommunity.org/�
mailto:perryWatts@comcast.net�

19

APPENDIX:
1) LINEAGE TRACER FOR SASHELP.TMPLMST STYLES (Style92TemplateLineagesHighlighted.HTML)

20

2) PART OF THE LINEAGE TRACER FOR THE NORMAL STYLE (Normal92Lineages.HTML)
Part of the Styles.Normal template is being included here to show how much it differs in structure from the
Styles.Default template. CONTAINER is pretty much the common ancestor for all non-graphics style elements in
Styles.Default, whereas there is no corresponding common ancestor in Styles.Normal. DEFAULT listed at the head of
lineages 18 - 54 is the common ancestor for only about half the lineages.

From Appendix #1 it can also be seen that both the Styles.Default and styles.Normal templates inherit from
Base.Template.Style. However, Base.Template.Style does not dovetail with Styles.Normal. The lack of fit becomes
evident when Styles.Normal HEADER attributes are displayed in a POPUP window. Most from the template are miss-
ing in the output.

…

 …

21

3) PART OF THE ATTRIBUTE DESCRIPTOR (AttributeDescriptor92.HTML)

…

…

	REFERENCES
	TRADEMARK CITATION
	CONTACT INFORMATION

